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Abstract—In autonomous vehicles, depth information for the
environment surrounding the vehicle is commonly extracted using
time-of-flight (ToF) sensors such as LiDARs and RADARs. Those
sensors have some limitations that may potentially degrade the
quality and utility of the depth information to a substantial
extent. An alternative solution is depth estimation from stereo
pairs. However, stereo matching and depth estimation often
fails at ill-posed regions including areas with repetitive patterns
or textureless surfaces which are commonly found on planar
surfaces.

This paper focuses on designing an efficient framework for
stereo depth estimation, using deep learning technique, that
is robust against the mentioned ill-posed regions. With the
observation that disparities of all pixels belonging to planar
areas (scene plane) viewed by two rectified stereo images can
be described using affine transformations, our proposed method
predicts pixel-wise affine transformation parameters based on
the depth information encoded in the aggregated cost volume.
We also introduce a propagation term which enforces all pixels
belonging to the same scene plane to be transformed using the
same parameters. Disparity can then be computed by multi-
plying the predicted affine parameters with the corresponding
pixel locations. The proposed method was evaluated on several
benchmark datasets. We are able to obtain competitive results
and at the same time reducing the processing time of common
convolution neural network (CNN) in stereo matching by 50%.
Analysis of the findings shows that our method can produce
reliable results at the ill-posed regions which are challenging to
the current state-of-the-arts methods.

Index Terms—stereo matching, depth estimation, disparity
estimation, affine transformation, planar geometry constraint

I. INTRODUCTION

ABILITY to perceive the world in three dimensions (3D)
is an important aspect of several autonomous vehicle

related tasks including localization and mapping [2], object
detection and avoidance [3] and path planning [4]. Preci-
sion of depth map correlates with the safety of autonomous
vehicles as, high depth precision allows accurate 3D object
detection and avoidance [5], [6] and reliable cruise control
[7]. Furthermore, accurate localisation of autonomous vehicles
rely on having precise 3D positions of selected landmarks
[8]. Absence of reliable and precise depth information can
therefore lead to catastrophic road accidents.
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(a) Left input image (b) Right input image

(c) PSMNet [1] (d) Ours

Fig. 1: Performance visualization. (a) and (b) are a pair of
challenging input stereo images. (c) Result of the state-of-
the-art method PSMNet [1]. (d) Result of our method. Our
method is able to rectify erroneous matching and predict a
smooth planar disparity surface (region pointed by the arrow).

Common methods employed to infer depth information
from the scene include (1) Active sensors: time-of-flight (ToF)
sensors such as Light Detection and Ranging (LiDAR) and
Radio Detection and Ranging (RADAR) and (2) Passive
sensors: dense stereo matching and triangulation from two or
multiple images captured from RGB cameras. Although off-
the-shelf RGB-D cameras, such as Kinect from Microsoft [9]
and RealSense from Intel [10] have simplified capturing depth
information in an indoor scene, these sensors often fail at
challenging outdoor scenarios or under strong luminance (e.g.
sun light) and only provide limited sensing range. Meanwhile,
the LiDAR sensor is well known for its accuracy and precision
where the captured depth only has errors of an order of cen-
timetres and is currently used in many autonomous vehicles.

Active and passive sensors are often included in a comple-
mentary configuration in autonomous vehicles to accomplish
various vision tasks, including motion prediction, obstacle de-
tection and avoidance, and depth estimation. However, active
sensors have some serious practical limitations: (1) the signal
emitting from LiDAR may interfere with other active sensors
including other LiDAR sensors [11] and can be absorbed by
some materials, (2) there are applications (e.g. military and
defence applications) where active sensing is ruled out, (3) the
density of the depth map generated using LiDAR or RADAR
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is sparse. For example, the Velodyne HDL-64E LiDAR sensor
[12] with resolution of 64 scan lines can only cover about 6%
of the total depths of image points which leads to missed
detection of object, in particular small objects in a scene [13].
Missed detection can lead to failure in obstacle avoidance
and cause tragic road accidents, (5) when compared to RGB
cameras, LiDAR is relatively more expensive and it does not
provide other additional information besides depth which may
be useful. e.g. text on a traffic sign or color of a traffic light
which are important when making decisions.

Depth information can be extracted from stereo images
based on dense stereo matching algorithms [14]. Conventional
dense stereo matching algorithms compute similarity scores
between stereo patches in terms of various measures such as
mean squared error (MSE), mean absolute difference (MAD)
and normalized cross-correlation [14]. Since these methods
rely on pixel intensities to compute the similarity scores, they
often fail at ill-posed regions such as textureless surfaces or
scenes with repetitive pattern or objects.

In recent years, convolutional neural networks (CNNs) have
been employed to solve dense stereo matching problems.
Instead of relying on RGB color intensities to calculate
similarity, CNNs are commonly used to extract features from
the patches and the similarity score is computed based on
cross-correlation between the features [15], [16]. Methods
designed based on such similarity scores outperform conven-
tional methods such as the well-known Semi-Global Matching
(SGM) [17] by a large margin. More recently, end-to-end
learning models were proposed that can directly perform stereo
matching and depth estimation [1], [18]–[22]. While end-to-
end models are able to compute dense disparity maps with
impressive accuracy, most of the models are computationally
expensive. For example, GANet [20] requires 1.8 seconds to
process one stereo pair from the KITTI dataset [23].

Despite the significant improvements achieved by end-to-
end CNN models, stereo matching at the ill-posed regions re-
mains challenging. Most man-made environments are charac-
terized by planar surfaces, which often appear to be textureless
(such as roads and rendered walls) or with repetitive patterns
(brick walls) leading to ill-posed stereo matching problems.
The illustration in Figure 1c shows an example where a state-
of-the-art end-to-end depth prediction method has failed at an
ill-posed region.

As demonstrated in [24], [25], transformation of scene
planes between two rectified stereo images has three degrees
of freedom: (1) scaling, (2) shearing and (3) translation. As
such, we should be able to accurately represent the disparities
on any planar region using a 3 DoF affine model.

In this work, we propose an end-to-end deep learning model
to perform stereo matching and disparity estimation, that
combines CNN and geometric constraints (it incorporates an
affine disparity model). Affine disparity model is also referred
as slanted surface [25] and in this paper we sometimes,
when its helpful to the reader, refer to this transformation
as the planar constraint. Our model takes a pair of stereo
images as input and outputs a dense disparity map without any
post-processing steps to refine the final output. Unlike [24]–
[26], our method does not search for affine disparity models

(fp) explicitly. Instead, we predict fp for each pixel using
the depth information extracted from the stereo images. The
proposed method employs a smoothness term which penalizes
the disparities of pixels belonging to the same scene plane
without following the same parameters fp. The proposed
method is able to resolve ambiguities in the ill-posed regions
(see the example in Figure 1d ).

The main contributions of this work are three-fold:
• The first point of novelty and significance is the idea

of combining CNN and geometric constraints and its
development in an end-to-end learning framework that is
demonstrably capable of mitigating the effect of matching
ambiguities in ill-posed regions.

• Another important contribution is the introduction of a
novel smoothness term that penalizes the disparities of
pixels belonging to the same scene plane but does not
conform to the model having the same parameters fp.

• The deep model design devised as our proposed solution
is itself a major contribution as it effectively requires less
burdensome 3D CNN layers and is able to produce better
results than the other model with similar structure, GC-
Net [18].

The remainder of this paper is organized as follows. Sec-
tion II describes the related work in the field of learning-based
methods for stereo matching and depth estimation (with and
without planar constraints). Section III presents the proposed
end-to-end learning model for stereo matching and depth
estimation with planar constraints. Section III also describes
the training method and hyper-parameter selection for the
proposed network. Experimental results and discussions are
presented in Section IV, and Section V concludes the paper.

II. RELATED WORKS

A. Learning-Based Stereo Matching and Depth Estimation

In contrast to traditional methods which rely on RGB color
intensities in a local patch between stereo images to perform
stereo matching, Zbontar and Lecun [15] proposed a method
called MC-CNN that uses the features extracted by a CNN and
a series of fully connected layers to compute similarity score
or matching cost between the stereo patches. Compared to
the traditional methods, the matching costs returned by MC-
CNN are robust to ambiguities in photometric appearances
while allowing to incorporate local context. Following this
work, Luo et al. [16] proposed a more efficient solution for
stereo patch matching based on computing the inner product
of the extracted features from the input patches at each
disparity level. However, these methods are inefficient as post-
processing steps are often required to refine the initial disparity
estimates.

To improve the efficiency, CNN-based end-to-end deep
learning models were proposed to perform stereo matching
and depth estimation within a single framework [18], [27].
These end-to-end learning models take a pair of rectified stereo
images as input and predict a dense disparity map as output
without the need for any post-processing. Mayer et al. [27]
proposed two networks: (1) DispNet, which is inspired by
FlowNet [28] that takes the stacked stereo image pairs as
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inputs and uses a encoder-decoder 2D convolutional network
(hourglass) to predict dense disparity map and (2) DispNetC
that first correlates left and right feature maps across disparity
and the product is passed through an hourglass convolutional
network to compute a dense disparity map. Both DispNet and
DispNetC outperform MC-CNN and are roughly 1000 times
faster [27]. Their results showed that CNN-based end-to-end
learning model is able to improve the efficiency significantly
without sacrificing the accuracy.

Perpendicular to the above direction, Kendall et al. [18]
proposed a new method called GC-Net that uses shifted
concatenation method to construct the initial cost volume and
3D CNNs to aggregate the cost. Instead of using another
layer of CNN or argmax operation to convert the aggregated
cost volume into dense disparity map, they used soft-argmax
for this task. The methods that construct cost volume using
correlation are more efficient than the shifted concatenation
as 3D CNNs are more computationally expensive than 2D
CNNs, but the latter outperforms the former by a large margin.
This is because the cost volume constructed using shifted
concatenation retains all the features, thus containing more
information for the 3D CNNs to learn to compute matching
costs from these features while correlation loses information
due to dimension reduction [22].

Following Kendall et al. [18]’s footsteps, Chang et al. [1]
proposed Pyramid Stereo Matching Network (PSMNet) that
includes a spatial pyramid pooling (SPP) module to incorpo-
rate hierarchical context information [29] and a 3D stacked
hourglass network to regularize the network. Zhang et al. [20]
also proposed the GA-Net inspired by the popular traditional
method for depth estimation, semi-global matching (SGM).
GA-Net shares a network structure similar to the ones in-
troduced in [1], [18] but it incorporates semi-global and
locally guided aggregation layers that aggregate cost volume
to incorporate global context while preventing the loss of fine
details.

On the other hand, several methods were proposed to
include context information such as edges and semantics to
further improve the performance of disparity estimation. For
instance, Song et al. [30] proposed EdgeStereo that incorpo-
rates edge information extracted from a separate network to
improve the accuracy of stereo matching. Yang et al. [21]
proposed SegStereo that incorporates semantic information
extracted by the included semantic segmentation network.
Similarly, Miclea et al. [31] proposed to improve the perfor-
mance of a real-time traditional stereo matching method by
including semantic features.

B. Stereo Matching and Depth Estimation with Planar Con-
straint

Disparity and scene points belonging to the same planar
region in rectified stereo pairs are well explained by three
degrees of freedom transformations (scaling, shearing and
translation) [24]. Based on this observation, Bleyer et al. [25]
proposed a new method called PatchMatch, in which stereo
matching is solved using “slanted plane” algorithm [26].
Instead of searching and assigning plane parameters to each

pixel from all possible planes whose size is infinite, random
initialization is performed with the assumption that at least one
pixel of the region is close to the correct one. Both spatial and
view extension are then performed to propagate the correct
plane hypotheses, between the neighbouring pixels as well
as between left and right views. Matching cost at each pixel
is computed using the disparity calculated from the assigned
plane parameters. Moreover, if the input is a video sequence,
temporal propagation can be performed between the current
and previous frames.

Several works including [24], [32], [33], have been proposed
based on the above method [25] by incorporating PatchMatch
into global models and adding explicit smoothness terms to
regularize the local neighbourhoods of 3D labels [34]. Also,
PatchMatch was integrated into object extraction pipeline to
improve the overall accuracy by leveraging disparity informa-
tion as a prior [35]. Specifically, disparity map of a given
stereo image pair is computed by fitting all image pixels to
3D planes using PatchMatch. Object proposals are generated
using the computed disparity map. Lastly, a modified Patch-
Match is utilized to refine the disparity map and generated
object proposals. More recently, Duggal et al. [36] proposed
DeepPruner, a CNN-based PatchMatch algorithm for stereo
matching. DeepPruner models the traditional PatchMatch algo-
rithm into CNN-based learning model, which allows the model
to learn how to effectively propagate context information and
compute highly accurate cost volume with less computational
cost.

Rather than working on pixel level, many researchers
also worked on assigning correct plane parameters to seg-
ments [37]–[40]. The reference image is first over-segmented
into numerous non-overlapping segments based on the sim-
ilarity in color space. Then, using the initial disparity infor-
mation obtained from performing stereo matching between the
reference and target images, slanted plane is fitted within each
segment. Segment-based stereo matching method assumes that
(1) the boundaries of the extracted segments coincide with the
disparity boundaries and (2) disparity varies smoothly within
a segment. Although the first assumption depends on the
quality of the input image and the performance of the image
segmentation method, it has yielded reliable results in many
scenarios. Some prior works also focused on implementing
global optimization using Markov Random Field (MRF) [37]
or Graph Cuts [39], [40] to minimize the defined energy cost
function. In these works, each segment is represented as a
graph node.

While global optimization stereo matching methods can
produce accurate results, these methods are computationally
expensive and have large memory footprints. Alternatively, lo-
cal stereo matching algorithms such as Block Matching (BM)
are highly efficient. However, BM is prone to errors as the
algorithm assumes that all disparities within a block must
be constant. This assumption is only valid for fronto-parallel
areas and is often violated in common scenes. To tackle this
problem, Einecke et al. [41] proposed to find the best matches
of pixels within a block on left image over multiple blocks on
right image. For instance, given a left block of size 3 × 3,
the best matches of three pixels (out of the nine pixels) may
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come from a right block with disparity − 1, another three
pixels from block with disparity and the rest from block
with disparity + 1. Similarly, Muresan et al. [42] proposed
to relax the fronto-parallel assumption by using multiple tilted
matching blocks as descriptors rather than relying on square
blocks that are parallel to the image plane. The tilted blocks
relax the mentioned fronto-parallel constraint and thus able to
achieve better accuracy than the traditional BM.

Conversely, instead of relying on exhaustive search for local
correspondences between a stereo image pair using a sliding
window along the full disparity ranges, Sinha et al. [43]
proposed to estimate disparity for each pixel using local
plane sweep. The proposed method utilizes sparse feature
correspondences to propose local planes. These proposed plane
hypotheses are then used to perform plane sweep to estimate
disparity at each local region. By decomposing the stereo
matching problem into multiple local problems can effectively
improves the overall efficiency and encourages smooth local
surface within each region.

Park and Yoon [44] proposed using the planar constraint to
refine the initial disparity maps (irrespective of the method
that generated the map). PSMNet [1] was implemented as
the base model in their work. From the initial disparity map,
both local and global plane hypotheses were generated. To
further improve the results, a global optimization step, using
hierarchical clustering to group interrelated plane hypotheses,
was performed. However, this method strongly depends on the
accuracy of initial disparity map generated from the selected
network.

C. Combining geometry with CNN

Rather than treating deep neural network as a “black box”
that can outperform conventional methods in most computer
vision tasks, by instilling the geometry knowledge into the
network, one can reason about what is occurring within
the network. Moreover, geometry knowledge will act as a
regularizer, which will further improve the performance of a
given task. For instance, in the context of monocular depth
estimation, prior works utilized auxiliary information such
as pose estimation [45]–[47] or optic flow [48] to reason
the geometry transformation of the scene between two con-
secutive time frames. A network was proposed in [49] that
jointly predicts depth and surface normal, with the aim of
embedding depth-surface-normal mutual transformation into
constraint consistency between the two outputs. Furthermore,
in the context of view synthesis, Liu et al. [50] incorporated
homography into the proposed neural network to reason the
transformation of planar surfaces in the scene and generate a
realistic novel view from a single input image.

III. PROPOSED METHOD

While most stereo matching and depth estimation methods
can produce high-quality and accurate depth estimates, these
methods often fail to do so at ill-posed regions, including
areas with repetitive patterns or textureless surfaces. These
regions are commonly found on planar or flat surfaces (e.g.
roads, buildings). This problem motivates us to design a

robust solution against the mentioned ill-posed region without
sacrificing the accuracy of other areas. We propose an efficient
network that exploits the disparity information encoded within
an aggregated cost volume to accurately predicts and assigns
plane parameters (affine transformation parameters) to all
pixels. We also proposed a novel propagation term that rectifies
the incorrect predictions by enforcing all pixels belonging
to the same scene plane to be transformed using the same
parameters.

A. Slanted plane model in rectified stereo images

Given two 3D points that are on the same plane in camera
coordinate system, namely point P and point Q, it is known
that the respective transformation of those points between the
left (pl, ql) and the right (pr, qr) cameras is related by a
homography matrix, H , such that

pr = Hpl, (1)

qr = Hql, (2)

where pl and ql are obtained by projecting P and Q to the
image coordinates where the origin coincides with the center
of left camera. Note that all projected points are represented
in the homogeneous coordinates (e.g. pl = [plx, p

l
y, 1]

>).
In a rectified stereo image pair, disparity is defined as

the horizontal shift of a pixel when transformed from left
(target) image to right (reference) image or vice versa. Using
equation (1) we can derive:

pl − pr = (I −H) pl, (3)

where the first element of pl − pr is the disparity for point P
(dp) which can now be written as:

dp = (1− h11) plx − h12ply − h13, (4)

where [h11, h12, h13] is the first row of H and pl =[
plx, p

l
y, 1
]>

. Similarly for point Q:

dq = (1− h11) qlx − h12qly − h13. (5)

For any points on a scene plane in rectified stereo image pairs,
the transformation from image coordinates to disparity has
three degrees of freedom. Therefore, for any point, that lie on
the same plane, we can write the corresponding disparity, d,
as:

dp = fp · pl, (6)

where fp = [θx, θy, θ0] is a constant vector. The relationship
between motion and depth is explained in [51] (chapter 3).

The above insight suggests that disparity of all pixels
belonging to the same scene plane can be described using
an affine transformation. Slanted plane formulation allows
our method to accurately represent scenes with any planar
surfaces. Furthermore, enforcing this planar constraint enables
our model to generate smooth surfaces on planar regions,
which is critical in 3D reconstruction tasks. This is fully
explained in the following section.
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Fig. 2: Visualization of atrous spatial pyramid pooling module
(ASPP) implemented in our network. ASPP is able to effec-
tively increase the receptive field and capture global features
from the given input which is critical in stereo matching.

B. Disparity regression via plane fitting

Given a pair of stereo images, Il and Ir, the objective is
to design a parametric model capable of performing depth
estimation by generating an accurate dense disparity map.
Our method first utilizes the depth information encoded in the
aggregated cost volume to predict pixel-wise plane parameters,
fp. Next, we incorporate spatial propagation at each pixel
to correct any erroneously predicted plane parameters. This
correction is performed by enforcing that the disparity at
pixel p = [px, py, 1] (computed using the plane parameters
fq at its neighboring pixels) should be close to the ground
truth disparity d̂p:

fq · [px, py, 1]> = d̂p ∀q ∈ Np. (7)

A pixel q = [qx, qy, 1] should be included in the neighbour-
hood of pixel p (Np) if both the points are on the same
scene plane. We determine this using a weight based on the
similarity in the color space between the two pixels in our
implementation. More details regarding the spatial propagation
loss will be discussed in Section IV (B).

C. Network Architecture

Figure 3 illustrates our proposed network, which consists of
a 2D CNN encoder used as a feature extractor, an intermediate
3D CNN hourglass to perform stereo matching and cost
aggregation, and a 2D CNN decoder that assigns pixel-wise
plane parameters at multiple scales.

1) Feature Extraction and Cost Volume: In contrast to the
common practice of computing stereo matching cost using
raw pixel intensities, we employ CNNs to extract a deep
representation of unary features. Similar to [1], [18], basic
residual blocks [52] are implemented to extract the unary
features from input stereo images. For feature extraction task,
we initially apply a 5 × 5 convolutional layer, followed by
a 3 × 3 layer without striding. We then include three blocks
of stacked CNN layers with a stride of 2 to subsample the
input. Each block consists of different numbers of CNN layers
with more layers corresponding to the learning of feature
representation at smaller scales. The selected number of stack
CNNs for each block is (3, 8, 12) with corresponding feature
dimensions of (32, 64, 128). Parameters are shared between

the left and right feature extraction modules to ensure similar
features are extracted from both left and right images.

We also included an Atrous Spatial Pyramid Pool-
ing (ASPP) module to extract hierarchical contextual infor-
mation and to increase the receptive field of the extracted
features effectively. Compared to Spatial Pyramid Pooling [29]
adopted in PSMNet [1], ASPP [53] is computationally more
efficient at capturing global image context at multiple scales by
utilizing atrous convolutional layers. As illustrated in Figure 2,
the included ASPP consists of four convolution layers: one
1×1 and three 3×3 convolution layers with different dilation
rates, r ∈ [6, 12, 18].

The extracted left and right unary features are used to
construct the cost volume. Shifted concatenation proposed
in [18] is performed to build our initial cost volume. The
constructed cost volume has a dimension of [2F,D,H,W ]
where F,D,H,W are the feature size, maximum disparity
range, height and weight of the cost volume. Then, a 3D
aggregation network is used to aggregate the constructed cost
volume.

2) 3D Aggregation Network: Although the 3D CNNs can
learn more information-rich context in the cost volume and
significantly improve stereo performance compared to the 2D
CNNs, the additional dimension is a burden on the compu-
tation time for both training and inference [18]. Despite this,
state-of-the-art stereo matching networks have many layers of
3D CNNs, either connected in series [20] or stacked hourglass
structure [1], [22]. As a result, these methods are capable of
producing accurate results at the expense of computational
efficiency.

In contrast, we propose to include a lite version of the
3D aggregation network in our model. Our 3D aggregation
network only consists of 13 layers of 3D CNNs as compared
to 28 layers in PSMNet [1] and GwCNet [22] and 15 layers
in GANet [20]. Most of the 3D CNNs in GANet were
replaced by the local-guided aggregation (LGA) and semi-
global aggregation (SGA) modules, which was proposed in
their work. The computation time of the mentioned works
for one image is at least 0.4 seconds, while our lightweight
implementation is able to reduce the runtime by half. Although
our model does not always produce the best results, it delivers
a rewarding trade-off between accuracy and efficiency.

The proposed 3D aggregation network consists of two initial
cost aggregation blocks (each block has two 3D convolution
layers) followed by a 3D hourglass, composed of nine 3D
convolution layers. Skip connections are included in the 3D
hourglass to retain high-level details, which may be discarded
by downsampling the cost volume. The included skip connec-
tions are 1 × 1 × 1 3D convolution layers that do not add
much to the overall computation cost. The overall structure
of our 3D aggregation network implemented in the proposed
network is illustrated in Figure 4. The kernel size of all the
3D convolution layers is 3× 3× 3. These layers are followed
by batch normalization and rectified linear activation (ReLU)
except the last layer of the network.

Also, our 3D aggregation network takes the cost volume
constructed via shifted concatenation as mentioned in the pre-
vious section as input and output an aggregated cost volume.
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Fig. 3: The visualization of our model. Our model takes a stereo image pair as input and perform feature extraction, cost
volume construction and aggregation, pixel-wise plane parameters prediction and disparity regression in sequence and produce
multi-scale dense disparity maps as outputs. During inference, the model only outputs the largest scale disparity map. Skip
connections from earlier layers are added to the plane parameters prediction phase (2D decoder) to retain high level details
in the final outputs. At each scale s, the 2D decoder computes a parameter map with size of [3, Hs ,

W
s ] where H and W are

the height and weight of the input image. Disparity map is computed by multiplying the predicted parameter map with pixel
locations as shown in equation (6).

The final layer of the 3D aggregation network reduces the
dimension of the cost tensor from 5D to 4D, before passing
it to the 2D CNN decoder. An initial disparity map is also
produced at the end of the 3D aggregation network and is
used to compute the initial prediction loss, which is described
in Section IV (B).

The initial disparity map is computed from the cost volume
using differentiable argmax or soft argmax proposed in [18].
We first convert the predicted similarity score (negative of
matching cost, cp) of each pixel p to probability distribution
using softmax operation σ(·). We then compute the initial
disparity value by taking the sum of each disparity d weighted
by the normalized probability σ(−cp[d]). Therefore, the initial
disparity at pixel p is defined mathematically as follows:

d3Dp =

Dmax∑
d=1

d× σ(−cp [d]), (8)

and the softmax operation is defined as

σ(zi) =
ezi∑Dmax

j=1 ezj
, (9)

where Dmax is the user-defined maximum disparity range.
Performing disparity regression using soft argmax is able to

produce disparities with sub-pixel accuracy as compared to the
conventional winner-take-all (WTA) approach that can only
output disparities with discrete values [18]. Also, unlike WTA,
soft argmax is fully differentiable, allowing the proposed
network to be trained in an end-to-end manner.

3) Plane Parameters Prediction (2D Decoder): As pre-
viously mentioned, disparity described using affine trans-
formation is robust against erroneous matching in ill-posed
regions. As such, we propose to refine the initial disparity
map predicted by 3D aggregation network, utilizing the affine
transformation. We designed our network to leverage depth
information encoded in the cost volume output from 3D
aggregation network to predict and assign affine parameters
fp to each pixel. Specifically, the aggregated cost volume is
first concatenated with skip features of the same scale. The
concatenated cost volume is then fed into the plane parameter
prediction network as input. The plane parameter prediction
network maps the predicted matching costs of each pixel
cp to an affine parameter fp. Furthermore, the network also
progressively upsamples the predicted affine parameter maps
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by a factor of 2.
Thus, our network produces an affine parameters map with

the size of [3, H,W ] as final output where H and W are the
height and weight of the input image. Our network also pro-
duces multi-scale outputs, which allow it to learn in a “from-
coarse-to-fine” manner [54]. The disparity map is computed
by multiplying the predicted affine parameters map with the
corresponding pixel locations as shown in Equation (6). To
retain high level details such as sharp edges, skip connections
from the feature extractor layers are added into the network.
The architecture of our 2D decoder is inspired by [27] and is
illustrated in Figure 3.

D. Loss Function

We formulate our loss function as

L =

4∑
i=1

αi(Li
r + λLi

p) + βLinit, (10)

where Linit is the initial prediction loss, Lr is the multi-scale
disparity regression loss and Lp is the propagation loss. The
parameters α and β are the loss weights and λ is to balance
the influence of the propagation loss term.

1) Disparity Regression Loss, Lr: We adopt the smooth
L1 loss function as the disparity regression loss to train
the purposed network. Smooth L1 loss function has low
sensitivity to outliers and is robust at disparity discontinuities,
as compared to L2 loss function. The disparity regression loss
term is defined as:

Lr(d, d̂) =
1

N

N∑
p=1

smoothL1(dp − d̂p), (11)

where N is the number of valid pixels, d is the predicted
disparity and d̂ is the ground truth disparity, and

smoothL1
(x) ,

{
0.5x2, if |x| < 1
|x| − 0.5. otherwise (12)

2) Initial Prediction Loss, Linit: This loss function aims
to explicitly train the 3D CNN in our network to learn how
to perform the stereo matching task.

Linit(d
3D, d̂) =

1

N

N∑
p=1

smoothL1(d
3D
p − d̂p). (13)

In the Section VI, we show that by including this loss, our
network is able to produce better results. This is largely due
to the fact that by including this loss function, the network is
able to compute accurate cost volume and provides a better
initialization to our 2D decoder. We also adopt the smooth L1

loss function as the initial prediction loss.
3) Propagation Loss, Lp: As the initial predictions of

plane parameters may be erroneous, we propose a novel
propagation term to further improve the performance of plane
parameters prediction. The propagation term rectifies any erro-
neous prediction by referring to its related neighboring pixels.
Specifically, the propagation term constraints the disparity of
all pixels belonging to the same plane to be defined using the
same plane parameters. Our propagation loss is defined as:

+

Fig. 4: Visualization of the 3D aggregation network imple-
mented in our work. Our 3D aggregation network only consists
of 13 layers of 3D CNNs which effectively reduces the
computational burden of the proposed method.

Lp =
1

N

N∑
p=1

∑
q∈Np

ωpq|d̂p − fq · [px, py, 1]>|, (14)

where N represents the neighbouring pixels of p along four
different directions, namely top, bottom, left and right. There-
fore, the proposed propagation loss function can be seen
as spatial propagation with its neighbouring pixels in four
directions along horizontal and vertical directions.

If the target and neighbor pixels are closely related (belong
to the same plane), then the predicted parameters should be
the same. In other words, disparity at pixel p can be described
with plane parameters predicted at pixel q and vice versa. We
define the affinity between the two pixels using color similarity
weight, ωpq which is defined as:

ωpq , exp (−||Il(p)− Il(q)||). (15)

E. Implementation Details

All models were trained end-to-end with Adam optimizer
(β1 = 0.9, β2 = 0.999). Batch size of 16 was used for
Scene Flow dataset [27] and KITTI 2015 dataset [23], [55].
Color normalization was included in data preprocessing. Input
images were randomly cropped to size H = 256,W = 512
during the training phase. The maximum disparity was set to
Dmax = 192. We trained our model on Scene Flow dataset
for 19 epochs with learning rate of 1e−3 for the first 10
epochs, decreased it to 7e−3 for the remaining epochs. For
KITTI 2015, we fine-tuned our model pre-trained on Scene
Flow dataset for 600 epochs. The learning rate was set to
1e−3 for the first 400 epochs then decreased to 1e−4 for the
remaining epochs. We prolonged the training to 1200 epochs
to obtain the final model and the test results for KITTI 2015
submission. The parameters α and β are set as α1 = 0.6,
α2 = 0.8, α3 = 0.9, α4 = 1.0 and β = 0.6. The selection of
the parameters is accomplished by balancing the contribution
of loss function at different scales. For example, α is weighted
with the intuition that the largest scale i=4 in equation 10
should be the most important loss to minimize as compared
to the losses of smaller scales, i < 4. Similar principle also
applies to β. All weights have been empirically tested in our
experiments.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental Settings

We evaluated our method with different settings using Scene
Flow and KITTI 2015 datasets. The proposed network was



PRE-PRINT OF THE PAPER PUBLISHED IN IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION. SUBJECT TO COPYRIGHTS OF THE PUBLISHER. 8

TABLE I: Evaluation of the proposed method with different
settings.

Loss Function Scene Flow
Lr Linit Lp EPE

1.46
1.35
1.28
1.25

implemented using PyTorch [56]. The training process took
about 13 hours for Scene Flow dataset and 6 hours for
KITTI 2015 dataset. We performed ablation studies using both
Scene Flow and KITTI 2015 datasets with different settings
to evaluate the performance made by affine transformation in
disparity prediction, different values of the loss parameter λ
and different combinations of loss functions.

For Scene Flow dataset, the end point error (EPE) is used
as the evaluation metric (EPE measures the mean average
disparity error in all pixels). For KITTI 2015, the percentage
of outliers D1 is evaluated for background, foreground, and
all pixels. The outliers are defined as pixels whose disparity
errors are larger than max(3px, 0.005d∗), where d∗ denotes
the ground-truth disparity. As the KITTI 2015 dataset does
not provide the ground truth labels for the testing set and is
required to upload the final results to the evaluation server
for benchmarking, we performed training by splitting the
200 training images into 160 images for training and 40 for
validation.

TABLE II: Performance comparison with Scene Flow dataset.
For our proposed method, λ = 1.0.

GANet-15 PSMNet DispNetC GCNet Our
EPE 0.84 1.09 1.68 2.51 1.25

B. Evaluation on Scene Flow Dataset

1) Dataset: Scene Flow dataset is a large collection of
synthetic stereo dataset with dense disparity ground truth.
Scene Flow comprises three subsets of datasets with different
settings, FlyingThings3D, Driving and Moonkaa. This dataset
consists of 35,454 training and 4,370 testing images. The size
of each image is 960 × 540. As the maximum disparity in
this dataset is larger than our pre-defined maximum disparity
value, Dmax, any pixel with disparity larger than the Dmax

is neglected in the loss computation.
2) Disparity estimation: The performance of the pro-

posed method is compared with several state-of-the-art ap-
proaches including GC-Net [18], DispNet [27], PSMNet [1]
and GANet [20]. Table II compares the methods using End-
Point Error (EPE). Our method outperforms most of the
methods except PSMNet and GANet. As the testing set (subset
of FlyingThings3D) contains many complex objects that are
difficult to be described using planes such as motorcycles and
headphones, our method performs poorly when these objects
are present. However, as shown in Figure 5, our method out-
performs PSMNet in examples without the mentioned complex
objects. Our method is able to predict accurate disparity for the

background which is a planar structure with random images.
This shows that our method can reliably predict disparities on
planes.

(a) (b) (c)

Fig. 5: Performance visualization on Scene Flow dataset. (a)
are the left input image (top) and the ground truth (bottom).
Top row of (b) and (c) are the outputs of PSMNet [1] and
our proposed method. Bottom row of (b) and (c) are the error
maps generated using KITTI 3-px metric. Our method is able
to learn and predict excellent disparity for planar regions such
as the wall of the boxes and the background.

C. Evaluation on KITTI 2015 Dataset

1) Dataset: KITTI 2015 stereo dataset consists of real-
world imagery as the data were collected in city and rural
area and highways in Karlsruhe, Germany. It contains 200
training stereo image pairs with sparse ground truth disparities
collected using LiDAR sensor and 200 testing image pairs
without ground truth disparities. The size of each image is
376× 1240. KITTI allows performance evaluation by submit-
ting final results to their evaluation server.

2) Fine-tune pre-trained model: The KITTI 2015 dataset is
relatively small and consists of only 200 images. Thus, any
deep learning model will easily overfit if trained from scratch
using this dataset. To mitigate this problem, the model pre-
trained on Scene Flow dataset was used to fine-tune on the
KITTI 2015 dataset.

3) Disparity estimation: Experimental results demonstrate
that our method outperforms other deep learning stereo depth
estimation methods as listed in Table III. Although the quanti-
tative results in Table III show that our proposed method does
not have the best results as compared to GANet-15 [20] or
has slight improvement as compared to the GC-Net [18], our
method is able to produce more accurate and smoother dis-
parities and has lower processing time. Qualitative evaluation
of KITTI 2015 stereo results1 is illustrated in Figure 6.

2) Propagation loss function: We conducted several ex-
periments with different propagation loss weight, λ ∈
{0.0, 0.2, 0.4, 0.6, 0.8, 1.0} to evaluate the performance of
our model. As illustrated in Figure 7, when evaluated in KITTI
2015 dataset, in one case the performance improves as the λ
increases (top row) while in another, the performance worsens
due to over smoothing (bottom row). As shown in Table IV,
λ of 1.0 yielded the second best performance, which has an
error rate of 2.44% on KITTI 2015 validation set. Although

1Link to our KITTI 2015 submission: PCStereo

http://www.cvlibs.net/datasets/kitti/eval_scene_flow_detail.php?benchmark=stereo&result=cdcfc77b80228a2d13785f02f4415c9c4546ae81
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TABLE III: KITTI 2015 performance comparison. The included results are obtained from the KITTI 2015 leaderboard. The
results show the percentage of pixels with errors of more than three pixels or 5% of disparity error from all test images.

Method All (%) Noc(%) Runtime (s)D1-bg D1-fg D1-all D1-bg D1-fg D1-all
DispNetC [27] 4.32 4.41 4.34 4.11 3.72 4.05 0.06
SGM-Net [57] 2.66 8.64 3.66 2.23 7.44 3.09 67
Displets v2 [58] 3.00 5.56 3.43 2.73 4.95 3.09 265
MC-CNN-acrt [15] 2.89 8.88 3.89 2.48 7.64 3.33 67
GC-Net [18] 2.21 6.16 2.87 2.02 5.58 2.61 0.9
PSMNet [1] 1.86 4.62 2.32 1.71 4.31 2.14 0.41
GANet-15 [20] 1.55 3.82 1.93 1.40 3.37 1.73 0.36
Ours (PCStereo) 2.39 4.98 2.82 2.23 4.65 2.63 0.2

(a) (b) GANet [20] (c) GC-Net [18] (d) Ours

Fig. 6: KITTI 2015 test results. The left column shows the left input image of stereo image pair. For the top example, our
method produced better disparity prediction on the surface of the van that is located on the right of the image. For the bottom
example, our method produced better and smoother disparity prediction on the car that is located on the left of the image.

TABLE IV: Performance evaluation with different propagation
loss weight values. The error rate (%) represents the three-
pixel-error on KITTI 2015.

Lambda KITTI 2015 Scene Flow
Error Rate (%) EPE

0.0 2.40 1.28
0.2 2.55 1.21
0.4 2.72 1.11
0.6 2.50 1.58
0.8 2.47 1.43
1.0 2.44 1.25

the final performance of setting λ = 1.0 is slightly behind
λ = 0.0, by including the loss propagation term, our model is
able to produce a more piece-wise like results as demonstrated
in Figure 7 which is important in applications including
3D reconstructions. Furthermore, we demonstrate that our
model is capable of generating much smoother flat surfaces as
compared to PSMNet [1] by visualizing the generated results
in 3D which is shown in Figure 9.

D. Discussion

1) Loss function combinations: In this section, we explore
the effectiveness of different combinations of loss functions.
Our experiments show that our model is able to produce better
results with the Initial Prediction Loss, Linit included. The

Linit improves the initial prediction in our 3D CNN thus
producing a less erroneous cost volume that is then used
to predict pixel-wise plane parameters. Our experiments also
demonstrate that including the Propagation Loss, Lp further
improves the performance of our model. The Lp loss function
enforces local smoothness by constraining the neighbouring
pixels to have the same plane parameters as the target pixel
when their color similarity is high.

2) Efficiency of the proposed network: In this section, we
discuss the efficiency of our proposed network. The proposed
plane parameters prediction module is not only robust to
challenging scenarios, as mentioned in the previous section,
it is also highly efficient. The module requires a processing
time of only 10ms for each stereo image pair. Meanwhile,
the 3D aggregation network is considered the bottleneck of
the proposed network as it requires a processing time of
approximately 180 − 210ms for one stereo image pair. This
is due to the costly 3D convolution layers that have cubic
computational complexity and high memory consumption.
However, the 3D aggregation network can generate accurate
initial disparity, which provides reliable initialization for the
proposed plane parameters prediction module.

3) Performance of the proposed network on planar surfaces:
In this section, we discuss the performance of the proposed
network on disparity estimation, specifically on planar sur-
faces using the KITTI dataset. These planar surfaces include
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(a) (b) λ = 0.0 (c) λ = 0.2 (d) λ = 0.4 (e) λ = 0.8 (f) λ = 1.0

Fig. 7: Visualization of error maps produced using different λ propagation loss weights. Top row: Increase in λ parameter
improves disparity prediction. Bottom row: Increase in λ parameter leads to oversmoothing and deteriorate the results.

(a) (b) 3D network (c) Ours

Fig. 8: Visualization of error maps on planar surfaces. These surfaces are extracted using semantic maps provided by KITTI [59].
The results of a network with only 3D aggregation network are shown in the second column and the results of the proposed
network are shown in third column. The comparison shows that our proposed network can accurately estimates disparity for
planar surfaces. The corresponding D1 error is also included at the top left corner of all error maps.

(a) Ground Truth (b) Our (c) PSMNet [1]

Fig. 9: 3D illustration of the predicted depth. Our method is able to produce smoother flat surfaces such as the side wall of
the shelf and the background as compared to the PSMNet.

walls of buildings and roads. We compare the results of
two different networks: (1) the proposed network and (2)
the proposed network without the plane parameters predic-
tion module (feature extraction module and 3D aggregation
network only). As shown in Figure 8, our proposed network
has better performance as it can constantly generate disparity
estimates with higher accuracy on the planar surfaces. Also, by
including the proposed smoothness loss function, the network
can produce significantly smoother disparity estimates on the

planar surfaces.

V. CONCLUSION

In this paper, we proposed an end-to-end learning model
for stereo matching, which incorporates geometry planar con-
straint in its framework. Instead of focusing on designing
better matching algorithm or aggregation of cost volume, we
seek to accurately model planar regions in the scene and in
disparity space using the affine transformation (slanted plane).
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We demonstrated that our method is particularly useful when
the visual driving system is used in places that include many
planar objects (e.g. urban landscape). We have designed a
novel network architecture specifically to predict and assign
the transformation parameters to each pixel. We also proposed
a novel propagation loss function that ensures local smooth-
ness by enforcing same parameters are assigned to all pixels
belonging to the same plane. Experiments demonstrated the
effectiveness of our proposed method on the Scene Flow and
the KITTI 2015 datasets.
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