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Abstract—Deep convolutional neural networks for dense prediction tasks are commonly optimized using synthetic data, as generating
pixel-wise annotations for real-world data is laborious. However, the synthetically trained models do not generalize well to real-world
environments. This poor “synthetic to real” (S2R) generalization we address through the lens of shortcut learning. We demonstrate that
the learning of feature representations in deep convolutional networks is heavily influenced by synthetic data artifacts (shortcut
attributes). To mitigate this issue, we propose an Information-Theoretic Shortcut Avoidance (ITSA) approach to automatically restrict
shortcut-related information from being encoded into the feature representations. Specifically, our proposed method minimizes the
sensitivity of latent features to input variations: to regularize the learning of robust and shortcut-invariant features in synthetically
trained models. To avoid the prohibitive computational cost of direct input sensitivity optimization, we propose a practical yet feasible
algorithm to achieve robustness. Our results show that the proposed method can effectively improve S2R generalization in multiple
distinct dense prediction tasks, such as stereo matching, optical flow, and semantic segmentation. Importantly, the proposed method
enhances the robustness of the synthetically trained networks and outperforms their fine-tuned counterparts (on real data) for
challenging out-of-domain applications.
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1 INTRODUCTION

D EEP convolutional neural networks (DCNNs) have
achieved state-of-the-art performance in many dense

prediction tasks such as semantic segmentation [1], [2], [3],
motion correspondences estimation (stereo matching [4], [5],
[6] and optical flow [7], [8], [9], [10]). Despite their successes,
these top performing models usually require large amounts
of labelled data samples for training. As such, their per-
formance strongly depends on the availability of labelled
training data. However, the process of generating pixel-wise
annotated ground-truth for dense prediction applications is
both challenging and expensive. Furthermore, it is certainly
infeasible to generate labelled data sufficient to cover all
scenarios of the real-world (e.g. different weathers, seasons,
towns, day/night, urban/rural, etc). Meanwhile, synthetic
data, generated using game engines, offers an alternative so-
lution for training DCNNs for dense prediction applications.
As different scenarios can be simulated in game engines,
large amounts of densely annotated synthetic data can be
easily generated at a much lower cost.

On the other hand, synthetically generated images un-
avoidably have some visual artefacts such as unrealistic
textures, fake appearances, simplified lighting conditions
and unrealistic scene layouts [11]. As such, models that
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are trained on synthetic data often show poor generaliza-
tion on the real-world domain, due to the existence of
the minor visual differences between synthetic and real
images (see Fig. 1). For example, under loose constraints,
convolutional neural networks (CNNs) tend to be biased to-
wards background [12] and local textures [13], [14], instead
of learning the true concepts (e.g. shapes and image context)
from the training data. Geihos et al. [15] coined the process
of learning these biases from the training data as shortcut
learning.

While several methods have been previously pro-
posed [14], [16], [17] to mitigate shortcut learning, these
methods are manually designed and rely on the assumption
that the shortcuts can be identified in advance. However,
shortcut cues exploited by CNNs can be non-intuitive, task-
specific, and difficult to identify [18], [19]. Therefore, a
universal approach that can effectively mitigate shortcut
learning for different tasks and network architectures is
desirable.

A straightforward method to avoid the learning of un-
desirable attributes (e.g. shortcuts) from the input data is to
restrict the amount of input-relevant information encoded
in the feature representation. This goal can be achieved
by using the Information Bottleneck (IB) principle [20] by
seeking parameters θ that optimize the following objective:

arg max
θ

I (Y,Z; θ)− βI (X,Z; θ) (1)

where Z is the representation of input X , Y is the target
label, I(·) is mutual information and β ∈ [0, 1] is the hyper-
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Fig. 1: Synthetic-to-realistic (S2R) performance comparison for different dense prediction tasks: stereo matching (top row),
optical flow (middle row) and semantic segmentation (bottom row). Baseline task networks naively trained on synthetic
data only (b) failed to generalize to unseen realistic domains. The proposed ITSA method can substantially improve S2R
performance in different tasks, despite training using synthetic data only.

parameter that controls the size of information bottleneck.
The IB principle regularizes the learning of compressive
yet expressive feature representation Z , by allowing the
network to exploit only the minimum amount of input
information required for accurate predictions. While the IB
principle has been proven to be effective in generalizing the
network between IID training and testing data, our experi-
ments (see Section 3.2) showed that IB does not promote the
generalization to out-of-domain data. This insight strongly
suggests that these compressed features, constrained by the
IB; are neither robust nor shortcut-invariant. As a result, the
IB optimized networks still suffer from shortcut learning,
and fail to generalize to unseen domains.

Recently, Pensia et al. [21] introduced robust IB, which is
built upon the original IB principle. Robust IB was proposed
to improve a networks’ adversarial robustness, by mini-
mizing the sensitivity of the learned feature representations
(against small perturbation in the input space). Specifically,
robust IB utilizes the Fisher information of the learned
features (parameterized by the inputs), to measure the sen-
sitivity of the features with respect to a perturbation in the
input space. As a result, robust IB constrained networks
are insensitive to small perturbations that are added to the
input images (e.g. adversarial attack via Fast Gradient Sign
Method (FGSM) [22]). As the learned shortcut-dependent
features are also highly sensitive to changes in the input
space [15], robust IB offers a promising tool to automati-
cally mitigate shortcut learning and promote synthetic-to-
realistic (S2R) domain generalization. To the best of our
knowledge, the principle of the robust IB has not been
previously explored for domain generalization.

Inspired by this, we propose to minimize the Fisher
information, as an additional regularization loss term, to
promote S2R domain generalization for stereo matching, op-
tical flow estimation and semantic segmentation networks.
However, direct optimization of the Fisher information,
using gradient descent, requires the computation of second
order derivatives. As such, it would be computationally pro-
hibitive for deep neural networks with many parameters,
and tasks that use high dimensional input images (e.g. dense

prediction tasks such as segmentation and correspondences
estimation). To overcome this problem, we proposed an
Information-Theoretic Shortcut Avoidance (ITSA) learning
algorithm, which consists of a novel loss term, and per-
turbation technique, to approximate the optimization of the
Fisher information loss. The proposed ITSA is computation-
ally efficient, and as we show by extensive experiments,
it can promote the learning of shortcut-invariant features
and achieve high degrees of S2R domain generalization.
Furthermore, ITSA is also task and model agnostic as it
can be easily extended to different dense prediction tasks,
without network architecture alteration.

This paper is an extension of our previous work [23],
where we focused on demonstrating the efficacy of the
proposed ITSA on improving S2R domain generalization in
stereo matching networks. In this work we specifically:

1) investigate the use of ITSA for more broad set of
problems. We show that the proposed ITSA can also
substantially improve S2R domain generalization
for other dense prediction tasks such as optical
flow estimation (Section 4.2) and semantic segmen-
tation (Section 4.3).

2) demonstrate that ITSA can also substantially en-
hance the robustness of dense prediction networks
and perform favourably as compared to its fine-tune
counterpart on challenging anomalous scenarios
such as rainy weather and night-time (Section 4.3.5).

3) analyze the feature maps extracted by dense predic-
tion networks trained with different settings (Sec-
tion 5.3). Evidently shown by the results of the anal-
ysis, the proposed method ITSA can promote the
learning of robust and shortcut-invariant features in
dense prediction networks.

The rest of the paper is organized as follows. Sec-
tion 2 describes the related work in the field of synthetic-to-
realistic domain generalization for dense prediction vision
tasks and shortcut learning. Section 3 presents the problem
statement (of domain generalization in dense prediction
tasks) and a motivational toy example: to illustrate the
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Fig. 2: An overview of the proposed shortcut-avoidance strategy to achieve domain generalization in dense prediction
networks. The mψ network represents the task network (for example, stacked 3D hourglass in stereo matching networks,
classifier in semantic segmentation networks, and convolutional decoder in optical flow networks). Furthermore, the
parameters are shared across the two feature extractor networks fθ (best viewed in color).

limitation of the previously proposed Information Bottle-
neck principle in promoting domain generalization. This
section also includes detail of the proposed method for
automatic shortcut avoidance and domain generalization.
Experimental results are presented in Section 4. An ablation
study of the proposed method is included in Section 5.1,
and Section 5.3 provides discussion of the feature maps we
derived from our models. Section 6 concludes the paper.

2 RELATED WORK

2.1 Synthetic-to-Realistic Domain Generalization for
Dense Prediction Vision Tasks
In this paper, we demonstrate an approach to promote S2R
generalization across three application domains. The first
two (stereo matching and optical flow) essentially depend
on correspondence estimation (2.1.1); and the third is se-
mantic segmentation (2.1.2).

2.1.1 Correspondence Estimation
In recent years, end-to-end deep neural networks designed
for correspondence estimation such as stereo matching [4],
[24], [25], [26] and optical flow [7], [8], [9], [27] have excelled
in most datasets and benchmarks. These networks are pri-
marily trained from scratch, using synthetic datasets gen-
erated via game simulation. However, without fine-tuning
the synthetically pre-trained networks on real-world data,
these networks often do not generalize to unseen realistic
environments.

To promote domain generalization in stereo matching
networks, Shen et al. [5] introduced CFNet, an efficient net-
work architecture with multi-scale cost volume fusion and
refinement, to enforce the learning of robust and domain-
invariant structural representation for stereo matching. Sim-
ilarly, Zhang et al. [28] proposed DSMNet, which employs
Domain Normalization and non-local graph-based filtering
layers to enforce the learning of structural features that are
domain-invariant. Moreover, DSMNet can also be extended
to improve the domain generalization performance in opti-
cal flow networks.

In contrast, we have identified shortcut learning [29]
as a major factor that hinders stereo matching networks

(a) MNIST (b) MNIST-M (c) SYN (d) SVHN (e) USPS

Fig. 3: Examples of five different domains in the Digits-
DG dataset. The five domains include MNIST, MNIST-
M, SVHN, SYN and USPS. Each image in these datasets
contains one digit only.

from generalizing across domains. In this work, we show
that avoiding shortcut learning can effectively enhance the
robustness of the stereo matching networks and enables
a model to generalize across domains. This is evidenced
by showing superior performance on challenging realistic
data without fine-tuning. Furthermore, unlike DSMNet, our
method can be easily used to improve the domain general-
ization performance of optical flow networks without alter-
ing the network architecture. (Indeed, our ITSA approach
can likewise be employed in stereo matching and semantic
segmentation, without altering the network architecture.)

2.1.2 Semantic Segmentation

The topic of synthetic-to-realistic domain generalization for
semantic segmentation has been largely under-explored, as
only a few studies have been made previously. In general,
the previously proposed methods can be categorized as fea-
ture normalization approaches [30], [31] and style transfer
approaches [32], [33]. The feature normalization approaches
aim to remove domain-specific information embedded in
the statistics of the feature representation (e.g. feature co-
variance [31] or feature mean and variance [30]), using
whitening [34] or standardization [35], [36] techniques.
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On the other hand, the style transfer approaches seek
to promote the learning of domain-invariant features by
randomizing the appearance and texture of the synthetic
training images. For instance, Peng et al. proposed GLTR [32]
that promotes the learning of domain-invariant features by
alleviating the texture bias in synthetically trained semantic
segmentation networks. This is achieved by randomizing
the texture of the synthetic training images, both globally
and locally, using abstract art paintings sampled from the
“Painter by Numbers” dataset. Meanwhile, Yue et al. pro-
posed DRPC [33] that utilized style transfer to randomize
the appearance of its synthetic data, using ImageNet [37]
training images. Furthermore, DRPC enforces consistency
between the features learned from the synthetic images and
the augmented images to promote the learning of domain-
invariant features. Huang et al. found that performing style
transfer using generative modelling techniques such as
GAN will have negative effects on image semantics and
domain-invariant features. To overcome this issue, Huang et
al. proposed FSDR [38] that first decompose input images
into domain-invariant and domain-variant frequency com-
ponents (FCs). Then, domain randomization is performed
in the frequency space by randomizing the domain-variant
FCs using images from the ImageNet dataset, without
changing the domain-invariant FCs. Meanwhile, Lee et al.
proposed WildNet, which promotes learning diverse fea-
tures in terms of styles and semantic information [39].
Specifically, WildNet diversifies the feature styles by aug-
menting source features to resemble wild styles using Adap-
tive Instance Normalization (AdaIN). In addition, WildNet
uses contrastive learning approach to learn diverse, yet
class-discriminant features from the source features and
source-to-wild augmented features.

In comparison to existing approaches, our method does
not include auxiliary datasets for appearance or texture
augmentation. Also, the proposed method does not involve
feature normalization techniques, which could remove im-
portant information from the feature representations [40].
Instead, our method aims to automatically avoid shortcut
learning in synthetically trained semantic segmentation net-
works and promote the learning of robust and shortcut-
invariant features to improve the domain generalization
performance.

2.2 Shortcut Learning

Geirhos et al. [15] coined the term shortcut learning as a
phenomenon where DNNs learn trivial solutions by relying
on superficial features (shortcuts). These features are spuri-
ously correlated with the target labels, without contributing
to transferability across contexts. For example, image clas-
sification networks tend to rely on shortcuts such as back-
grounds [12], [15] and textures [13], [41] to improve their
performance. However, these networks fail to generalize to
unseen domains, where the spurious correlations between
shortcuts and labels are violated [42]. Similarly, we observed
that stereo matching networks trained on synthetic data also
have a tendency to exploit shortcuts to produce accurate
depth results in synthetic domains. Consequently, these
networks fail drastically when tested in unseen realistic
environments.

Several attempts have been made to restrict the learn-
ing of identified shortcuts and generalize DNNs across
domains [14], [16], [31], [41], [43]. These methods rely on
having some shortcut-related prior knowledge and usually
include data augmentations [16], [43] or dropout-based reg-
ularization [14] as part of their solutions. However, short-
cuts are non-trivial, task-specific, and are often difficult to
identify a priori [18], [19]. In contrast, our proposed method
automatically avoids shortcut learning without requiring
shortcut-related knowledge in advance.

3 METHODOLOGY

3.1 Problem Statement

In this work, we focus on the synthetic-to-realistic domain
generalization for multiple vision tasks. Without consider-
ing any specific task, given a synthetic dataset Dsyn with N
number of densely annotated samples {xisyn, yisyn}Ni=1, the
goal is to obtain robust task networks (e.g. DCNNs) that are
domain-invariant and can generate accurate estimates ŷ(i)

for unseen realistic environments Dreal.
To this end, we aim to prevent the task networks from

exploiting spurious shortcut features from the synthetic
input images. As mentioned in Section 1, the Informa-
tion Bottleneck (IB) principle limits the amount of input-
relevant information encoded in the feature representation.
Consequently, the IB-constrained networks learn to extract
compressive yet relevant features for predictions. As such,
the IB principle may be seen as a natural choice to achieve
our objective: Avoiding shortcut learning from the synthetic
data. However, it was found that the IB principle is not
robust to small input perturbations (e.g. FGSM adversarial
attack) [21]. As a result, the compact features extracted by
the IB-constrained network remain fragile to such pertur-
bation. Moreover, as shortcut cues exploited by DCNNs
are also highly sensitive to input perturbations (e.g. data
augmentations) [15], we conjecture that the IB-constrained
networks would also include the spurious shortcut cues in
the learned compact feature representations for prediction,
and harming the domain generalization performance.

To resolve this issue, a robust version of this method,
called the robust IB [21], is proposed, which minimizes
the sensitivity of the features with respect to the input
variations. As a result, robust IB can theoretically avoid
the learning of spurious shortcut cues from synthetic data,
and offers a promising approach to improve synthetic-to-
realistic domain generalization performance. We demon-
strate the domain generalization effect of IB approach, and
its robust variant called robust IB (RIB), using a toy example
included in the next section.

3.2 Motivation: Toy Example

In this toy experiment, we investigate the efficacy of the
Information Bottleneck (IB) principle [20], and its robust
counterpart (RIB) [21]; in improving the performance of
domain generalization. As computing the mutual informa-
tion in IB is computationally intractable for deep neural
networks, we employed the deep variational information
bottleneck (VIB) [44] to construct a lower bound on the IB
objective in Eq. (1). The implementation details of this toy
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TABLE 1: Performance comparison of digit recognition networks optimized via empirical risk minimization (ERM), the
variational information bottleneck (VIB), its robust variant (RIB) and our proposed ITSA. While VIB performs well in the
in-domain tests, it performs poorly on out-of-domain tests. Top-1 accuracy (%) is reported.

Methods MNIST MNIST-M SHVN SYN USPS Avg

Baseline (ERM) 97.9± 0.17 28.5± 4.14 13.0± 1.28 14.4± 1.41 72.9± 2.96 45.4± 1.07

VIB 99.1± 0.17 15.2± 0.72 10.1± 0.03 10.7± 0.27 79.5± 3.09 42.9± 0.50

RIB 98.9± 0.41 46.0± 2.86 18.1± 3.20 18.1± 1.12 75.1± 2.27 51.3± 0.81

ITSA 98.6± 0.24 51.4± 0.20 24.1± 2.99 21.2± 1.56 74.6± 1.08 54.0± 0.62

TABLE 2: Comparison of GPU memory requirement and
training time per iteration for the digital recognition net-
works. The batch size was set to 12. The RIB [21] has sig-
nificantly higher GPU memory requirement and processing
time as compared to other counterparts.

Methods Time/Iter (s) GPU Memory (MB)

Baseline (ERM) 0.008 1, 223

VIB 0.011 1, 227

RIB 13.229 19, 325

ITSA 0.018 1, 227

experiment are included in Section 1 of our supplementary
document. We choose the digit recognition (DR) task for this
purpose. This is because DR only requires Convolutional
Neural Networks (CNNs) with substantially lesser number
of trainable parameters as compared to other computer
vision tasks, which makes implementing RIB possible. To
evaluate the performance of domain generalization for DR,
we employ the commonly used Digits-DG dataset. This
dataset consists of five hand-written digit datasets, namely
MNIST [45], MNIST-M [46], SYN [46], SVHN [47] and
USPS [48], where each subset can be regarded as a different
domain. In our experiments, we follow the common practice
of referring to MNIST as the source domain and the others
as the unseen target domains.

We hypothesize that the trained model should be able to
generalize its performance from source domain to unseen
target domains if the model learned to avoid using spuri-
ous correlations (shortcuts). As shown in Tab. 1, standard
IB (VIB) can effectively reduce overfitting and achieves
the best performance in the source domain (MNIST). In-
terestingly, VIB also achieves the best performance in the
USPS dataset. We conjecture that VIB promotes the encod-
ing of domain-specific shortcuts in the compressed feature
representations. Consequently, the IB-optimized networks
perform impressively on in-domain datasets (e.g. MNIST
and USPS) but fail when tested on out-of-domain datasets.
We show in Fig. 3 that MNIST and USPS datasets can be
considered as in-domain, as their data have common char-
acteristics (e.g. white digit with black background). More
importantly, VIB even displays worse performance than the
baseline method in unseen domains: MNIST-M, SVHN and
SYN. This indicates that the standard IB principle is not
suited for mitigating shortcut learning (to promote domain
generalization performance).

3.3 Robust Information Bottleneck and Fisher Informa-
tion

As our aim is to develop an IB based cost function that
is not susceptible to the existence of shortcuts in source
data. We take inspiration from the robust IB method [21]
that utilizes (in place of I(Z,X)) the statistical Fisher infor-
mation Φ(Z|X) of the extracted features Z parameterized
by the inputs X as a more robust measure of information.
Fisher information Φ(Z|X) is defined as:

Φ(Z|X) =

∫
X

Φ(Z|X = x)pX(x)dx, (2)

where

Φ(Z|X = x) =

∫
Z

∥∥∥∇x log pZ|X(z|x)
∥∥∥2
2
pZ|X(z|x)dz. (3)

The term Φ(Z|X = x) can be regarded as the sensitivity
of the latent distribution pZ|X(·|x), with respect to changes
at the input x. Therefore, optimizing the Fisher informa-
tion, Φ(Z|X), will minimize the average sensitivity of the
latent distribution with respect to change of inputs X . As
shortcuts are generated by data artefacts that are transient 1

by nature, they are sensitive to perturbations of input
data [15]. As such, minimizing the Fisher information is a
step towards promoting the learning of shortcut-invariant
features. This conjecture is supported by the results of the
toy experiment (Tab. 1). The digit recognition models, reg-
ularized by Fisher information (RIB), achieve significantly
better performance than the baseline and standard IB net-
works in the target domains.

In order to minimize the Fisher information (Eq. (3)),
one has to compute second order derivatives such as
∇θ∇x log pZ|X(z|x), which is computationally prohibitive
for dense prediction tasks that requires large dimensional
inputs [49]. We show in Tab. 2 that RIB demands significant
training time and GPU memory consumption as compared
to the baseline and VIB approaches. To overcome this issue,
we propose ITSA, a simple yet computationally feasible
approach to promote the learning of shortcut-invariant fea-
tures. As shown in Tab. 1 and 2, the proposed ITSA can
achieve impressive domain generalization performance in
the digit recognition task, with substantially lesser training
time and GPU memory consumption than the RIB approach.
The high-level overview of our proposed ITSA shortcut
avoidance strategy is depicted in Fig. 2.

1. We use transient to describe image attributes that are inconsistent
across domains, and spuriously correlated with the true label. These
features may include backgrounds, textures, image style, etc.
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1.45 2.34 4.98 73.99 7.83 64.07

1.57 1.65 1.59 1.67 1.71 1.51

Fig. 4: Examples of shortcuts in stereo matching networks.
The left and right input images are included in the top two
rows. The disparity maps estimated by the baseline PSM-
Net [24] are included in the third row and ITSA-PSMNet in
the bottom row. The performance of the baseline PSMNet
deteriorates substantially when the shortcut attributes are
distorted or removed from the input stereo images. The
corresponding EPE is displayed on the estimated disparity
map. Best viewed in color and zoom in for details.

3.4 Approximating Fisher information

Optimizing the Fisher information Φ
(
Z | X

)
measure

(Eq. (2)) is related to minimizing Φ
(
Z | X = x

)
. By adding

a regularization term such as Φ
(
Z | X = x

)
to the loss func-

tion, we can penalize the transient features and discourage
networks from learning shortcuts. To calculate this term, we
employ a first order approximation as described below.

Lemma 3.1. If ε > 0, u is a unit vector (i.e. ‖u‖ = 1, we refer
to as the shortcut perturbation) and x∗ = x+ εu, then, subject to
first order approximation:

Φ
(
Z | X = x

)
=

Ez
[∣∣∣pZ|X=x∗ (z)− pZ|X=x (z)

∣∣∣]2
ε2 cos2 ψ

+V
[∥∥∥∇x log pZ|X=x (z)

∥∥∥
2

] (4)

where Ez [υ] and V [υ] are the expectation and variance of υ, and
ψ is the angle between u and ∇xpZ|X=x.

The proof is given in the supplementary document (see
Section 2).

The first term in the RHS of Eq. (4) will be minimized
when the divergence (distance) between the two distribu-
tions, pZ|X=x and pZ|X=x+εu, is reduced. There are many
popular divergence measures between distributions, such
as Kullback-Leibler divergence, Jensen-Shannon divergence,
Total Variation, the Wasserstein distance, etc. In this work,
we choose the Wasserstein distance: as the distributions
pZ|X=x and pZ|X=x+εu may not have common supports and
it leads to a simpler loss function.

In the case of a deterministic feature extractor, which
is common in stereo matching networks, the distributions
pZ|X=x and pZ|X=x∗ can be seen as two degenerate dis-
tributions (i.e. Dirac delta distributions) located at points
z = fθ (x) and z∗ = fθ (x∗). Furthermore, the V [·] in Eq. (4)
will be zero. In this case, the Wasserstein-p distance can be
simplified as:

TABLE 3: Analysis of the effect of data augmentation on
the performance of stereo matching networks. All networks
are only trained on the Scene Flow training set and the
EPE metric is employed for evaluation (lower value indi-
cates better performance). The results show that removing
shortcut related artefacts (by data augmentation) negatively
impact the performance of these networks. In particular,
our proposed augmentation can even significantly impact
robust methods (e.g. CFNet).

Inputs PSMNet [24] GwcNet [50] CFNet [5]

No Aug (X) 1.09 0.79 1.00

ACJ 13.98 3.13 1.34

GrayScale (XL) 37.68 8.41 1.32

GrayScale (XR) 9.82 2.25 1.09

SCP (ε = 0.5) 5.84 2.90 2.55

Wp(pZ|X=x∗ , pZ|X=x) =
(
‖z∗ − z‖p2

)1/p
. (5)

Using the above insights, we can see that minimizing
‖z∗ − z‖2 is a step towards minimizing Φ

(
Z | X = x

)
(for

p = 1). Thus, we propose to promote the learning of
robust and shortcut-invariant features in dense prediction
networks (e.g. stereo matching, optical flow and seman-
tic segmentation networks), by optimizing the overall loss
function defined below:

L = Ltask (ŷ, y) + λLFI (z, z∗) (6)

where ŷ and y are the estimated and ground-truth dis-
parity maps, LFI is our proposed Fisher information loss
function defined as:

LFI =
n∑
i=1

∥∥∥z(i) − z∗(i)∥∥∥
2

(7)

and Ltask is the task-specific loss function. For example, the
distance-based loss function (e.g. MAE, MSE, smooth-L1) is
commonly employed for optimizing pixel-wise regression
networks such as stereo matching networks and optical flow
networks. Meanwhile, the cross-entropy loss is commonly
used to train pixel-wise classification networks such as
semantic segmentation networks.

3.5 Shortcut Perturbation (SCP)
In order to compute LFI, we need to define u (referred to as
shortcut perturbation, introduced in Lemma 3.1):

u =
∇xz(i)∥∥∇xz(i)∥∥2 (8)

where ∇xz(i) is the gradient of the extracted features z
with respect to input, which can be computed using the
autograd.grad function that is available in the automatic
differentiation package of PyTorch. The shortcut-perturbed
image can then be expressed as:

x∗(i) = x(i) + ε
∇xz(i)∥∥∇xz(i)∥∥2 (9)

The above perturbation will put more weight on pixels that
are sensitive to changes in the input. Some examples of
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TABLE 4: Synthetic-to-realistic domain generalization eval-
uation of stereo matching networks, using KITTI, Middle-
bury and ETH3D training sets. All methods are trained
on the Scene Flow dataset and directly tested on the three
real datasets. Pixel error rate with different threshold are
employed: KITTI 3-pixel, Middlebury 2-pixel and ETH3D
1-pixel (lower value indicates better performance).

Methods
KITTI Middlebury

ETH3D
2012 2015 Full Half Quarter

HD3 [51] 23.6 26.5 50.3 37.9 20.3 54.2

PSMNet [24] 27.4 29.3 60.4 29.1 19.6 16.1

GwcNet [50] 11.7 12.8 45.5 18.1 10.9 9.0

CasStereo [52] 11.8 11.9 40.6 - - 7.8

GANet [4] 10.1 11.7 32.2 20.3 11.2 14.1

MS-PSMNet [53] 14.0 7.8 - 19.8 - 16.8

DSMNet [28] 6.2 6.5 21.8 13.8 8.1 6.2

MS-GCNet [53] 5.5 6.2 - 18.5 - 8.8

CFNet [5] 4.7 5.8 28.2 13.5 9.4 5.8

ITSA-PSMNet 5.2 5.8 28.4 12.7 9.6 9.8

ITSA-GwcNet 4.9 5.4 26.8 11.4 9.3 7.1

ITSA-CFNet 4.2 4.7 20.7 10.4 8.5 5.1

shortcut perturbation are included in Fig. 2 of our supple-
mentary document. Intuitively, pixels with large absolute
value of ∇xz will have significant impact in altering the
statistics of encoded latent distributions and the extracted
latent feature representations. Moreover, these pixels are
also likely to include shortcuts: as shortcuts are highly sen-
sitive to perturbations of the input [15]. In other words, the
role of SCP is to distort the shortcut information presented
in the input images in order to suppress the learning of
shortcut features. We show in Sections 4.1.3, 4.2.3, and 4.3.3
that SCP augments the shortcut artefacts in the synthetic
images and substantially deteriorates the performance of
baseline networks that leveraged shortcut features for pre-
dictions.

To examine the accuracy of the above approximations,
we trained the digit recognition network of our toy ex-
periment with the proposed SCP and LFI (ITSA). As the
proposed method is specifically designed for domain gener-
alization, our method can effectively generalize the network
to unseen domains and achieve better performance (2.7%)
than the robust information bottleneck as shown in Tab. 1.

4 EXPERIMENTS

To demonstrate the efficacy of our proposed ITSA method in
improving the synthetic-to-realistic domain generalization
performance for dense prediction tasks, we have included
three different dense prediction tasks in our experiments.
These tasks are stereo matching and disparity estimation,
optical flow estimation and semantic segmentation. For
each task, the dataset description, implementation details,
shortcut analysis, cross-domain generalization performance
comparison and network robustness analysis are included
in the next section.

(a) Input (b) PSMNet [24] (c) GwcNet [50] (d) CFNet [5]

Fig. 5: Qualitative results on KITTI 2015 stereo data. For
each example, the results of the baseline networks are pre-
sented on the top row and the results from our method are
included in the bottom row. The corresponding left image
and ground-truth are included in column (a). Our method
can significantly improve the stereo matching performance
even in scenario with poor lighting condition. Best viewed
in color and zoom in for details.

4.1 Stereo Matching and Disparity Estimation
4.1.1 Datasets Description
Synthetic Dataset: Scene Flow [54] is a large collection of
synthetic stereo images with dense disparity ground-truth.
It contains FlyingThings3D, Driving and Monkaa subsets,
and provides 35,454 training and 4,370 testing images. In
our experiments, all stereo matching networks are trained
on the Scene Flow dataset only.
Realistic Dataset: The realistic datasets used in our exper-
iments include KITTI2012 [55] and KITTI2015 [56] contain-
ing 193 and 200 stereo images of outdoor driving scenes,
Middlebury [57] containing 15 images of high resolution
indoor scenes, and ETH3D [58] containing 27 low resolution,
greyscale stereo images of both indoor and outdoor scenes.
Furthermore, datasets covering different weather conditions
provided by the DrivingStereo [59] dataset, and night-time
provided by Oxford Robotcar [60]) were also included to
evaluate the robustness of our proposed method. All the
above datasets come with sparse ground-truth.

4.1.2 Implementation Details
We have selected three popular and top-performing stereo
matching networks namely PSMNet [24], GwcNet [50] and
CFNet [5] as the baseline networks for our experiments.
We have selected these networks mainly due to the fact
that PSMNet and GwcNet are well-studied, and commonly
employed as a baseline in many prior works [61], [62], [63];
and CFNet is one of the recently proposed state-of-the-art
stereo matching networks. The networks are implemented
using PyTorch framework and are trained end-to-end with
Adam (β1=0.9, β2=0.999) optimizer. Similar to the original
implementations of the selected networks, our data process-
ing includes color normalization and random cropping the
input images to size H = 256 and W = 512. Following
the original implementation of CFNet, asymmetric chro-
matic augmentation and asymmetric occlusion [64] are also
employed for data augmentation in CFNet. The maximum
disparity for PSMNet and GwcNet is set to 192, and for
CFNet is set to 256. All models are trained from scratch
for 20 epochs with learning rate set to 0.001 for the first 10
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TABLE 5: Robustness evaluation on anomalous scenarios. Our method (ITSA) consistently enhances the robustness of
selected stereo matching networks and outperform the KITTI fine-tuned (KITTI-FT) models in the real-world anomalous
scenarios including rainy and foggy weather and night-time. The performance was evaluated using the D1 metric (lower
value indicates better performance).

Models KITTI-FT ITSA Sun Cloud Rain Fog Night Avg

PSMNet [24]
3 7 3.94 2.82 11.51 6.50 16.66 8.28

7 3 4.78 3.24 9.43 6.31 8.56 6.46

3 3 1.94 1.61 4.12 1.72 8.51 3.58

GwcNet [50]
3 7 3.10 2.46 12.34 5.98 25.33 9.84

7 3 4.35 3.31 9.78 5.88 9.41 6.55

3 3 2.18 2.07 9.21 2.16 8.37 4.80

CFNet [5]
3 7 1.79 1.65 5.20 1.59 11.56 4.36

7 3 3.42 2.87 5.32 4.32 8.95 4.98

3 3 1.84 1.55 2.40 1.58 5.69 2.61

(a) Left

3.12%

10.31%

4.74%

11.54%

(b) PSMNet

3.68%

14.58%

3.55%

25.12%

(c) GwcNet

2.95%

4.96%

2.50%

5.60%

(d) CFNet

Fig. 6: Qualitative comparison on out-of-distribution
data (e.g. rain and night) provided by the DrivingStereo [59]
and the Oxford Robotcar [60]. The estimated disparity maps
are generated using the PSMNet [24], GwcNet [50] and
CFNet [5]. For each example, the left stereo image and
the ground-truth disparity map are included in the left
column. Moreover, the disparity maps estimated by the
KITTI-2015 [56] fine-tuned networks are included on the
top row and the results of our method (ITSA) are included
in the bottom row. The corresponding D1 error rate is
also included on the predicted disparity map. Our method
can significantly improve the performance of these stereo
matching networks in challenging unseen domains.

epochs and decreased by half for another 10 epochs. The
batch size is set to 12 for training on 2 NVIDIA RTX 8000
Quadro GPUs. The models are trained using synthetic data
only and directly tested using data from different realistic
datasets. For all experiments included in the following sec-
tions, the hyper-parameters λ and ε were set to 0.1 and 0.5,
respectively.

4.1.3 Shortcut Analysis

Our hypothesis is that the baseline stereo matching net-
works naively trained on synthetic data only, learn to exploit
common artefacts of synthetic stereo images as shortcut
features. These artefacts include (1) consistent local statis-

tics (RGB color features) between the left and right stereo
images and (2) over-reliance on local chromaticity features
of the reference stereo viewpoint.

To empirically verify the above conjectures, we tested
three baseline networks trained only with synthetic data
(i.e. Scene flow), using augmented stereo inputs images.
The augmented stereo images were derived from the Scene
Flow test set using the following strategies: (1) Chromatic
Augmentation (e.g. asymmetrical color jittering (ACJ) [64]
and gray scaling) and (2) the shortcut-perturbation (SCP, ex-
plained in Section 3.5). If a network has learnt to utilize the
transient attributes (related to a shortcut), distorting those
in the input space will negatively impact its performance.
Experimental results, given in Tab. 3, showed that using the
augmented images as inputs has substantially worsened the
performance of the stereo matching networks.

Interestingly, the SCP images also deteriorate the per-
formance of the best performing robust stereo matching
networks such as CFNet [5]. In Section 4.1.4 and 4.1.5, we
show that our method can enhance the robustness of CFNet
and significantly improve its performance in unseen realistic
environments and anomalous scenarios.

The qualitative results, shown in Fig. 4, demonstrate
that the performance of the baseline networks (third row)
deteriorated significantly when the color features consis-
tency between stereo viewpoints is violated. Moreover,
as shown in the fourth column of Fig. 4, removing the
chromaticity features from the reference image will causes
substantial performance reduction in the baseline networks.
In contrast, our proposed method reduces the exploitation
of shortcut features and shows better robustness to adverse
data augmentation scenarios, without using shortcut-related
knowledge (see last row of Fig. 4).

4.1.4 Synthetic-to-Realistic Domain Generalization

Table 4 shows a comparison of the synthetic-to-realistic
domain generalization performance of our method with the
state-of-the-art stereo matching networks [4], [5], [24], [28],
[50], [51], [52] on the four realistic datasets. All networks are
trained on the synthetic Scene Flow training set only. We found
that the proposed ITSA substantially improved the domain
generalization performance (6.8% − 23.5%) of the selected
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(a) Input Image

F1: 24.89

F1: 19.02

(b) PwcNet

F1: 6.37

F1: 2.53

(c) PwcNet-ITSA

F1: 1.67

F1: 3.03

(d) RAFT

F1: 1.97

F1: 0.75

(e) RAFT-ITSA

Fig. 7: Qualitative results on KITTI 2015 train data for optical flow task. The colorized optical flow predictions (top row)
and the error maps with F1 score superimposed (bottom row) are included for each method (lower value indicates better
performance). Despite training with synthetic data only, the proposed ITSA can substantially improve the synthetic-to-
realistic domain generalization performance of PwcNet [27] and RAFT [7] networks.

TABLE 6: Analysis of the effect of data augmentation on the
performance of optical flow networks, using PwcNet [27]
and RAFT [7]. All networks are trained on the synthetic Fly-
ingChairs and FlyingThings train set, and the EPE metric is
employed for evaluation on the FlyingChairs test set (lower
value indicates better performance). The results show that
removing shortcut related artefacts (by data augmentation)
negatively impact the performance of these networks. As-
terisk (∗) indicates networks trained with asymmetrical
chromatic augmentation included.

Inputs PwcNet PwcNet∗ RAFT∗

No Aug (X) 2.42 2.35 1.12

ACJ 11.1 2.49 1.25

GrayScale (Xt) 12.6 2.51 1.32

GrayScale (Xt+1) 10.0 2.47 1.20

SCP (ε = 0.1) 3.73 3.16 2.59

stereo networks (PSMNet [24] and GwcNet [50]), outper-
forming the state-of-the-art stereo matching networks in the
realistic datasets. The improved networks also outperform
DSMNet [28] on the KITTI 2012 [55] and KITTI 2015 [56]
datasets, and achieve comparable performance as the CFNet
on the Middlebury [57] datasets. In addition, we show that
ITSA is even capable of further enhancing the robustness
and cross-domain performance of CFNet [5], which was the
best performing stereo matching networks in the Robust
Vision Challenge 2020. Comparison of qualitative results
generated by the baseline networks and our methods are
included in Fig. 5. Additional qualitative results on Middle-
bury and KITTI 2015 datasets are also included in Fig. 3 and
4 of our supplementary document.

4.1.5 Network Robustness Analysis
Here, we analyze the robustness to anomalous conditions,
including night-time, foggy and rainy weather situations,
of a network trained on synthetic data with the proposed
ITSA. To compare, we train the same network twice: (1)
pre-train using synthetic data followed by fine-tuning on
realistic KITTI 2015 dataset (common strategy), (2) train only

TABLE 7: Cross-domain generalization evaluation of op-
tical flow networks, using KITTI-2015 (realistic) and Sin-
tel (synthetic) training sets (lower value indicates better
performance). All methods are trained on FlyingChairs and
FlyingThings3D datasets only. Our method (ITSA) substan-
tially improve the RAFT networks and outperform existing
methods in synthetic-to-real generalization. The best results
are in bold and the second best are underlined.

Method
Sintel (train) KITTI-15 (train)

Clean Final F1-epe F1-all

HD3 [51] 3.84 8.77 13.17 24.0

PWCNet [27] 2.55 3.93 10.35 33.7

LiteFlowNet2 [65] 2.24 3.78 8.97 25.9

VCN [8] 2.21 3.68 8.36 25.1

MaskFlowNet [9] 2.25 3.61 - 23.1

FlowNet2 [66] 2.02 3.54 10.08 30.0

DICL-Flow [67] 1.94 3.77 8.70 23.6

RAFT [7] 1.43 2.71 5.04 17.4

SeparableFlow [10] 1.30 2.59 4.60 15.9

ITSA-PWCNet 2.23 3.76 9.99 30.3

ITSA-RAFT 1.38 2.69 4.48 15.7

using synthetic data with the proposed SCP and LFI (ITSA).
We also included the pre-trained counterpart of CFNet [5]
to illustrate the efficacy of our method in further enhancing
the network robustness.

Table 5 shows that the fine-tuned (FT) networks gen-
erally has better performance when tested on data similar
to the KITTI training data (sunny and cloudy). In contrast,
our method (ITSA) can substantially improve the robustness
and overall performance of the PSMNet [24] and Gwc-
Net [50], without using the real-world data. The overall
performance of fine-tuned CFNet is slightly better than
its ITSA counterpart. However, as mentioned earlier, the
proposed ITSA improves CFNet performance when only
using synthetic data for training. The results demonstrate
that our method has effectively improved the robustness
and performance of existing stereo matching networks, and
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TABLE 8: Analysis of the effect of photometric transformations and SCP on the in-domain and out-of-domain performance
of semantic segmentation networks. All networks are only trained on the synthetic GTAV training set, and the mIoU metric
is employed for evaluation (higher value indicates better performance). The results show that semantic segmentation
networks trained on synthetic data are susceptible to photometric bias. The proposed ITSA can mitigate shortcut learning
beyond photometric bias, and significantly improves the synthetic-to-realistic domain generalization performance.

Methods
GTAV

CityScapes
Baseline Brightness Saturation Contrast SCP (ε = 1.0)

w/o CJ 66.3 65.2 (↓ 1.1) 63.3 (↓ 3.0) 65.6 (↓ 0.7) 8.9 (↓ 57.4) 17.1

w/ CJ 67.8 67.6 (↓ 0.2) 67.3 (↓ 0.5) 67.6 (↓ 0.2) 33.1 (↓ 34.7) 30.4

w/ ITSA 67.1 66.4 (↓ 0.7) 66.7 (↓ 0.4) 66.7 (↓ 0.4) 64.5 (↓ 2.6) 40.9
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(a) Input Image (b) Ground-truth (c) Baseline (d) CS-fine-tuned (e) ITSA

Fig. 8: Qualitative results on challenging out-of-domain data provided by BDD-100K [68]. The proposed ITSA can
significantly improve the performance of semantic segmentation networks in challenging unseen domains. Despite training
on synthetic data only, our method has comparable performance as compared to the network fine-tuned on the realistic
Cityscapes [69] dataset (CS-fine-tuned).

extends the use of these networks to real-world applications,
without using the real data for fine-tuning.

When the annotated real data is available, using the
proposed ITSA for fine-tuning the selected stereo matching
networks can further enhance the networks’ robustness to
anomalous scenarios. As shown in Tab. 5, PSMNet [24]
and GwcNet [50] that are fine-tuned on the KITTI-2015
train set, using the ITSA method have achieved an overall
improvement of 4.70% and 5.04%. Furthermore, ITSA can
also improve the robustness of the top-performing CFNet [5]
in the challenging real-world scenarios (1.75% overall im-
provement).

4.2 Optical Flow Estimation
4.2.1 Datasets Description
Synthetic Dataset: FlyingChair [70] dataset contains 22k
image pairs with synthetically generated chair objects su-
perimposed on random background images collected from
Flickr website. Random translation and rotation transfor-
mations are applied to the chair objects and background
to generate the second image frame and ground-truth flow

fields. MPI Sintel [71] consists of 23 video sequences of an ac-
tion movie, with simulated image degradation effects such
as motion blur, defocus blur, and atmospheric effects. This
dataset provides a total of 1109 training image pairs with the
corresponding optical flow ground-truth labels. Following
[66], a subset of the FlyingThings3D [54] synthetic dataset
was also utilized for training the optical flow networks.
Different from the dataset version included for the stereo
matching task (section 4.1.1), extremely challenging samples
are omitted in this subset.

Realistic Dataset: Similar to the stereo matching task, the
realistic dataset included in our experiments is the KITTI
2015 [56] dataset, which consists of 200 image pairs and
the sparse ground-truth flow fields. However, to our best
knowledge, there are no challenging data samples of anoma-
lous scenes with optical flow ground-truth labels available
publicly. Thus, we omit the network robustness analysis for
the optical flow estimation task that requires anomalous
samples with ground-truth labels.
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TABLE 9: Synthetic-to-realistic domain generalization eval-
uation of semantic segmentation, using Cityscapes, BDD-
100K and Mapillary validation sets. All methods were
trained with ResNet-101 as the backbone, using the GTAV
synthetic dataset. Mean intersection over union (mIoU) is
employed as the evaluation metric (a higher value indicates
better performance). For each method, the base results are
included in the top row, and the improved results are
included in the bottom row. †For FSDR, we report the
results generated using the pre-trained model released by
the original author of FSDR.

Method
Cityscapes BBD-100k Mapillary Avg

mIoU mIoU ↑ mIoU mIoU ↑ mIoU mIoU ↑ mIoU mIoU ↑

DRPC [33]
33.56

8.97
27.76

10.96
28.33

9.72
29.88

9.88
42.53 38.72 38.05 39.77

FSDR† [38]
33.40

11.46
27.30

9.03
27.90

10.71
29.53

10.40
44.86 36.33 38.61 39.93

GLTR [32]
34.00

9.70
28.10

11.50
28.60

10.50
30.23

10.57
43.70 39.60 39.10 40.80

WildNet [39]
35.73

10.06
34.06

7.67
33.42

13.66
34.40

10.46
45.79 41.73 47.08 44.87

ITSA
33.16

10.61
29.83

11.93
30.94

12.38
31.31

11.64
43.78 41.76 43.32 42.95

4.2.2 Implementation Details
For our experiments, we have selected the PwcNet [27]
and the recently proposed and top performing RAFT [7]
as our baseline networks for optical flow estimation. While
there exists many other network architectures for optical
flow [9], [66], [72], we have selected these two networks
because they are designed specifically for optical flow with-
out including additional auxiliary tasks (e.g. occlusion mask
estimation [9], [73]). Also, these networks are well-studied
by the optical flow research community, and are commonly
used as a baseline in many previous works [74], [75], [76].

As dataset scheduling is utterly important to ensure
the convergence of optical flow networks [66], we fol-
low the conventional dataset scheduling procedure to op-
timize these networks. Both networks were pre-trained
from scratch, using the FlyingChairs dataset. Then, the
pre-trained networks are optimized on the FlyingThings3D
dataset. In our experiments, all training setups and hyper-
parameters for the RAFT network are kept the same as the
original work. Meanwhile, in PwcNet, we have included
batch normalization to the feature extraction sub-network
as we find it helps to speed up the convergence of the
network to good optimum. PwcNet was pre-trained for 216
epochs (approx. 400k iterations) on the FlyingChairs dataset,
and further trained for 100 epochs (approx. 330k iterations)
on the FlyingThings3D dataset. The hyper-parameters for
training in PwcNet: such as training loss weights, learning
rate, learning rate decay rate and trade-off weight (weight
decay regularization); are kept the same as the original im-
plementation. All networks were trained using one NVIDIA
RTX 6000 Quadro GPUs.

4.2.3 Shortcut Analysis
We found that optical flow networks learn to exploit
the same artefacts as stereo matching networks (see Sec-

TABLE 10: Synthetic-to-realistic domain generalization eval-
uation of semantic segmentation, using Cityscapes, BDD-
100K and Mapillary validation sets. All methods were
trained with ResNet-50 as the backbone, using the GTAV
synthetic dataset. Mean intersection over union (mIoU) is
employed as evaluation metric (higher value indicates better
performance). For each method, the base results are in-
cluded in the top row, and the improved results are included
in the bottom row.

Methods
Cityscapes BDD-100K Mapillary

mIoU mIoU ↑ mIoU mIoU ↑ mIoU mIoU ↑

IBN-Net [30]
22.17

7.47
-

-
-

-
29.64 - -

DRPC [33]
32.45

4.97
26.73

5.41
25.66

8.46
37.42 32.14 34.12

ISW [31]
28.95

7.63
25.14

10.06
28.18

12.15
36.58 35.20 40.33

GLTR [32]
31.70

6.90
-

-
-

-
38.60 - -

CSG [11]
25.88

9.39
-

-
-

-
35.27 - -

WildNet [39]
35.16

9.46
29.31

9.11
31.29

14.80
44.62 38.42 46.09

Ours (ITSA)
30.13

10.86
30.08

6.37
27.58

14.76
40.99 36.45 42.34

tion 4.1.3). Thus, as shown in Tab. 6, augmenting the in-
domain synthetic images (e.g. FlyingChairs dataset), using
asymmetrical color jitter (ACJ) and grayscaling, can sig-
nificantly deteriorate the performance of optical flow net-
works. Intuitively, including these chromatic augmentations
during training would alleviate shortcut learning in optical
flow networks. However, we found that networks trained
with these augmentations included (PwcNet* and RAFT*
in Tab. 6) remain fragile to our proposed SCP, despite being
robust to the included augmentations. This insight indicates
that SCP is able to break the unknown shortcut connections
exploited by the network, and worsen its performance.

Furthermore, SCP also managed to deteriorate the per-
formance of the state-of-the-art RAFT [7] network. This
observation suggests that certain shortcuts, apart from the
identified ones, are also exploited by the the RAFT network.
In the next section, we show that our proposed method can
removethe shortcut connections in the RAFT network, and
further improve its domain generalization performance.

4.2.4 Synthetic-to-Realistic Domain Generalization

In this section, we compare the synthetic-to-realistic domain
generalization performance of our proposed ITSA method
with the state-of-the-art optical flow networks, using the
Sintel [71] (synthetic) and KITTI-2015 [56] (real) datasets.
All networks are trained on the synthetic FlyingChairs and Fly-
ingThings3D datasets only. As shown in Tab. 7, our proposed
ITSA can consistently improved the synthetic-to-realistic
domain generalization performance of the included optical
flow networks by a substantial margin. Specifically, our
method managed to improve the PwcNet and RAFT by
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TABLE 11: Robust evaluation on anomalous scenarios
provided by BDD-100K dataset. The proposed method
(ITSA) consistently improves the robustness of synthetically
trained semantic segmentation networks and outperforms
state-of-the-art synthetic-to-realisitc domain generalization
method FSDR in real-world anomalous scenarios. The per-
formance was evaluated using the mIoU metric (a higher
value indicates better performance).

Method Blur Night Weather Exposure Avg

FDSR [38] 30.16 14.75 32.58 36.64 28.53

ITSA 32.97 18.36 34.49 36.73 30.64

TABLE 12: Robust evaluation on anomalous scenarios pro-
vided by BDD-100K dataset [68]. The proposed method
(ITSA) consistently improves the robustness of syntheti-
cally trained semantic segmentation networks and achieve
comparable performance as the Cityscapes fine-tuned (CS-
FT) models in the real-world anomalous scenarios. The
performance was evaluated using the mIoU metric (higher
value indicates better performance).

Method Blur Night Weather Exposure

Baseline 23.57 13.66 27.89 24.99

ITSA 32.29 18.07 33.11 33.90

CS-FT 32.70 15.82 35.94 39.03

3.48% and 11.1% of EPE, and 5.4% and 1.7% of F1-all,
respectively, when evaluated on the KITTI-2015 dataset.
Results of qualitative comparisons are included in Fig. 7.
Additional qualitative results on KITTI 2015 dataset are also
included in our supplementary document (refer to Fig. 5).

Moreover, our results also show that the proposed
method can effectively generalize the performance of
optical flow networks between synthetic domains (e.g.
FlyingThings3D→Sintel). For example, the performance im-
provement achieved by ITSA-PWCNet is between 4.33% −
12.55%, and ITSA-RAFT is between 0.74% − 3.50%, when
tested on Sintel synthetic dataset.

More impressively, our ITSA-RAFT network performs
competitively as compared to the top performing Separable-
Flow [10] method in cross-domain generalization, without
network modification or increase in model parameters and
inference time.

4.3 Semantic Segmentation
4.3.1 Datasets Description
Synthetic Dataset: GTAV [77] is a large-scale driving scene
semantic segmentation dataset generated using the Grand
Theft Auto V game engine. This dataset consists of 24, 966
training samples with dense semantic ground-truth labels,
and it has 19 objects categories that are compatible with the
realistic Cityscapes dataset.
Realistic Dataset: Cityscapes [69] is a large-scale dataset
containing high-resolution (e.g., 2048 × 1024) urban scene
images collected from 50 different cities primarily in Ger-
many. BDD-100K [68] is another real-world dataset that pro-
vides high-resolution (1280×720) and diverse urban driving
scene images collected from various locations in the US.

TABLE 13: A quantitative analysis of the effect of ε in SCP on
the performance of stereo disparity estimation in PSMNet
and GwcNet networks. All models were evaluated on the
synthetic Scene Flow (SF) dataset, using the end-point-error
(EPE). (Lower values indicate better performance).

Model Domain
ε

0 0.1 0.2 0.5 1 2
PSMNet

SF
1.09 1.08 1.09 1.06 1.17 1.21

GwcNet 0.79 0.79 0.77 0.75 0.85 0.91

TABLE 14: A quantitative analysis of the effect of ε in SCP on
the performance of optical flow estimation in PwcNet and
RAFT networks. All models were evaluated on the synthetic
FlyingChairs (FC) dataset, using the end-point-error (EPE).
(Lower values indicate better performance).

Model Domain
ε

0 0.1 0.2 0.5 1 2
PwcNet

FC
2.35 2.31 2.28 2.27 2.56 2.85

RAFT 1.12 1.11 1.09 1.07 1.29 1.37

This dataset consists of 7, 000 training and 1, 000 validation
images with densely annotated ground-truth. Mapillary [78]
is a diverse street-view dataset consisting of 25, 000 high-
resolution (the minimum resolution is 1920× 1080) images
collected from all around the world. In our experiments,
we employed the finely annotated set of Cityscapes and the
validation set of BDD-100K and Mapillary for synthetic-to-
realistic domain generalization evaluation.

4.3.2 Implementation Details
In our semantic segmentation experiments, we adopted
the Fully Convolutional Networks (FCN) [79] “backboned”
with the ImageNet pre-trained ResNet-50 [80] as our model.
The networks were trained using the GTAV [77] synthetic
dataset only. The optimized models were directly evalu-
ated on the Cityscapes, BDD-100K and Mapillary realistic
datasets, using the mean intersection over union (mIoU)
metric. The mIoU is the average of all IoU values over all
classes. Training was conducted for 40K iterations, using the
SGD optimizer with momentum of 0.9. The learning rate
was initialized as 1e-3 for the classifier (final fully connected
layer) and 1e-4 for the feature extractor. We also adopted the
polynomial learning rate scheduling with the power of 0.9.
The batch size was set to 4, and the hyper-parameter ε and
λ were set to 1.0 and 0.005, respectively. Furthermore, data
augmentation techniques such as color jittering, Gaussian
blur, random grey-scaling and random cropping were also
implemented to prevent the model from overfitting [31].

4.3.3 Shortcut Analysis
In contrast to motion correspondence estimation tasks (e.g.
stereo matching, optical flow) that find matching pixels
between two viewpoints, semantic segmentation involves
pixel-wise classification for a given image. Thus, informa-
tion such as image context [81] and objectness [82] are
assumed to be utilized by the semantic segmentation net-
works (SSNets) to achieve impressive performance. Instead,
it was found that SSNets that are trained on synthetic
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TABLE 15: A quantitative analysis of the effect of ε in
SCP on the performance of semantic segmentation in FCN
backboned with ResNet-50. All models were evaluated on
the synthetic GTAV dataset, using the mean intersection
over union (mIoU) metric. (Higher values indicate better
performance).

Domain
ε

0 0.1 0.2 0.5 1 2
GTAV 67.8 67.7 68.0 67.9 67.8 66.5

TABLE 16: A quantitative analysis of the effect of λ on
the performance of stereo matching networks. All models
were evaluated on the synthetic Scene Flow corrupted with
shortcut-perturbation technique (SF+SCP). End-point-error
is chosen as the evaluation metric, where lower values indi-
cate better performance and vice versa.

Model Domain
λ

0 0.01 0.1 1 2
PSMNet

SF + SCP
2.10 1.79 1.13 1.92 1.59

GwcNet 1.92 1.69 0.87 1.25 1.38

images learn to extract features that are biased towards
photometric characteristics of the input images [31]. As
shown in Tab. 8, applying photometric transformations (e.g.
brightness, saturation and contrast augmentation) to the in-
domain synthetic test samples can deteriorate the perfor-
mance of SSNets trained on the GTAV synthetic dataset.
Consequently, the photometric-biased networks fail to gen-
eralize to unseen realistic domain, and perform poorly when
tested on the Cityscapes dataset.

In our experiments, we found that including the afore-
mentioned photometric transformations during training can
effectively alleviate the photometric bias, and generalize the
SSNets from synthetic to realistic domains (shown in Tab. 8
mIoU improved by 13.3). Despite the promising results,
the SSNets trained with photometric transformation remain
fragile to our proposed SCP augmentation (mIoU: 67.8 →
33.1). This insight suggests that photometric artefacts are
not the only bias exploited by the SSNets. Furthermore, we
show that regularizing the training using the proposed ITSA
can alleviate the identified photometric bias and arguably
other unidentified biases. As a result, the SSNets trained
using the proposed ITSA achieve substantial performance
improvement in synthetic-to-realistic domain generalization
performance (mIoU improved by 23.8).

4.3.4 Synthetic-to-Realistic Domain Generalization
In this section, we compare the synthetic-to-realistic domain
generalization performance of the proposed ITSA and the
state-of-the-art domain generalization methods for semantic
segmentation. All methods included in this section were trained
using the GTAV [77] synthetic dataset, and evaluated on three
realistic datasets: Cityscapes [69], Mapillary [78] and BDD-
100K [68].

As shown in Table 9, the proposed ITSA provides the
best synthetic-to-realistic domain generalization improve-
ment in the BDD-100K dataset and second best in Cityscapes
and Mapillary datasets, compared to other recently pro-

TABLE 17: A quantitative analysis of the effect of λ on the
performance of optic flow networks. All models were evalu-
ated on the synthetic FlyingChairs corrupted with shortcut-
perturbation technique (FC+SCP). End-point-error is chosen
as the evaluation metric, where lower values indicate better
performance.

Model Domain
λ

0 0.01 0.1 1 2
PwcNet

FC + SCP
3.7 3.6 2.5 2.6 3.2

RAFT 1.4 1.2 1.2 1.3 1.3

TABLE 18: A quantitative analysis of the effect of λ on
the performance of semantic segmentation networks. All
models were evaluated on the synthetic GTAV corrupted
with shortcut-perturbation technique (GTAV+SCP). The net-
work is backboned with a ResNet-50 network that is pre-
trained on ImageNet. Mean intersection over union (mIoU)
is chosen as the evaluation metric, where higher values
indicate better performance.

Domain
λ

0 0.001 0.005 0.01 0.05
GTAV + SCP 63.8 63.8 64.5 64.0 63.1

posed methods. ITSA is outperformed by methods that
incorporate ImageNet, such as FSDR and WildNet, in
Cityscapes and Mapillary. This can be explained by an
observation made in [83], which indicates that ImageNet
domain knowledge is highly relevant to other real do-
mains (such as Cityscapes and Mapillary), thus benefiting
the synthetic-to-realistic transfer. In contrast, the BDD100k
dataset consists of images collected from diverse and chal-
lenging scenarios (such as night-time and bad exposure
images) that are different from the ImageNet domain. Nev-
ertheless, our method achieves the best performance on the
BDD-100k dataset. This shows that our method can enhance
the model robustness against challenging and anomalous
scenarios that are not presented in the training dataset, even
without exploiting additional information from the real
domain. For instance, in Table 11, we show that our method
outperforms FSDR in challenging anomalous scenarios such
as night-time and severe weather.

Furthermore, as depicted in Table 10, our proposed
ITSA method can also improve the synthetic-to-realistic
domain generalization of semantic segmentation network
backboned with ResNet-50 to perform competitively with
WildNet, without leveraging additional data from realistic
domains. Also, our ITSA method outperforms other pre-
viously proposed methods that do not utilize additional
information from the realistic domain, such as IBN-Net [30]
and ISW [31].

4.3.5 Network Robustness Analysis
In this section, we analyze the robustness of seman-
tic segmentation networks to the challenging scenarios
that are anomalous to the commonly observed data (e.g.
Cityscapes [69]). These anomalous scenarios are night-time,
adverse weathers, poor lighting and blur corruptions. To
this end, we have selected the BDD-100K dataset [68] to
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evaluate the networks’ robustness to the mentioned chal-
lenging scenarios. As the raw dataset was not previously
divided according to the data attributes, we first split the
dataset into the desired subsets, one for each anomalous
condition. The process for generating each anomalous sub-
set are included in the supplementary document (see Sec-
tion 4). These subsets are then employed for evaluating the
robustness of the semantic segmentation networks.

In this comparison, we trained the same semantic seg-
mentation network using three different settings: (1) train
only on GTAV synthetic data, (2) train on GTAV synthetic
data with the proposed ITSA method, and (3) pre-train on
GTAV synthetic data followed by fine-tuning on realistic
Cityscapes dataset (without ITSA). To help with the follow-
ing discussion, we refer to the networks trained on setting
(1), (2) and (3) as the baseline, ITSA and fine-tuned net-
works, respectively. As shown in Tab. 12, the ITSA network
consistently outperforms its baseline counterpart in all the
anomalous scenarios (mIoU improvement: 4.41%− 8.91%).
This observation again strongly highlights the fact that
our proposed ITSA method is not limited to promoting
synthetic-to-realistic domain generalization, but also capa-
ble of improving the network robustness to challenging
realistic anomalous scenarios. As a result, despite training
on the synthetic data only, the ITSA network can achieve
comparable performance as the fine-tuned network, when
tested with the anomalous samples (see Tab. 12). Results of
qualitative comparisons are also included in Fig. 8.

5 DISCUSSIONS

5.1 Ablation Study
This section presents results of our study on efficacy of each
component of the proposed method, for all included dense
prediction tasks: stereo matching, optical flow and semantic
segmentation. For each task, we first trained the baseline
model with the proposed shortcut-perturbation augmenta-
tion (SCP) only. Next, we trained the baseline model with
both the shortcut-perturbed stereo-images and the proposed
loss function LFI in Eq. (6). All networks included in this
study were trained using synthetic data only.

As shown in Tab. 19, for all included dense prediction
tasks, the baseline networks perform poorly when tested on
out-of-domain datasets. The performance improved when
shortcut-perturbations (SCP) were used in the training stage
for input image augmentations. Further improvement in the
networks can be seen when using the proposed method
i.e. SCP with the proposed loss function. For the stereo
matching task, we omitted CFNet in the ablation study
as it is specifically designed for synthetic to real domain
generalization.

5.2 Hyper-parameters Selection Strategy
This section explains our model selection strategy for tuning
the two important hyper-parameters: ε (Equation 9) and λ
(Equation 6), introduced in our proposed ITSA. We empha-
size that only held-out validation set of synthetic data
(source domain) were used for model selection. First, we
tune ε using the conjecture that smaller values of ε could
not promote sufficient shortcut avoidance, while larger val-
ues are detrimental to the model performance as strong

(a) Input (b) Baseline (c) KITTI-Ft (d) ITSA

Fig. 9: Qualitative illustration of feature maps extracted
by stereo matching network (PSMNet) optimized via dif-
ferent training configurations. The normalized feature vec-
tors (unit vectors) and feature vector magnitude are in-
cluded in the top and middle rows for each example. The
bottom row consists of the estimated disparity maps. The
baseline model extracted features with substantial random
patterns and failed to generalize to realistic domains. The
KITTI fine-tuned (KITTI-Ft) model learns to extract features
specific to the training domain. In contrast, our ITSA model
consistently extracts features with rich structural details
across different realistic domains.

perturbation would destroy certain important information
presented in the input images. To find an appropriate ε
value, we set λ = 0 and train ITSA models (Fig. 2) with
varying ε ∈ [0.0, 2.0] values. Each model is then evaluated
against held-out source domain validation data. As shown
in Table 13 and 14, the results indicate that up to a certain
value of ε, the validation performance remains roughly
constant (e.g. up to 0.5) and after that, it starts to deteriorate
sharply. Notice that this basically holds for two intended
applications (stereo disparity estimation and optical flow
estimation) and across four models (two in each application
area). However, Table 15 shows that 1.0 is a preferred value
for ε for the semantic segmentation network.

Next, to select λ, we take the ITSA network with chosen
ε (from the previous step) to apply the SCP augmenta-
tion (described in Section 3.5 of the main manuscript) to
the held-out source domain validation set. Then, we train
ITSA models with varying values of λ and evaluate the
performance of each model on the SCP augmented dataset
(mentioned above). The results are shown in Table 16, 17
and 18. The λ value that gives the best model performance
is then selected as the optimal value. Our final models, albeit
chosen from a coarse grid and based on the in-domain eval-
uation, can achieve superior out-of-domain generalization
performance.
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TABLE 19: Ablation results of different dense prediction tasks: stereo matching, optical flow estimation and semantic
segmentation. The included networks are: PSMNet [24] and GwcNet [50] for stereo matching, PwcNet [27] and RAFT [7]
for optical flow and ResNet50 + FCN [79] for semantic segmentation. SCP is the proposed shortcut perturbations and LFI
is the proposed loss function in Eq. (6). The employed evaluation metrics are: D1 metric for stereo matching and mIoU for
semantic segmentation. To evaluate the performance on optical flow, we employed endpoint-error (EPE) for Sintel dataset
and F1 metric for KITTI 2015 dataset.

SCP LFI

Stereo Matching Optical Flow Semantic Segmentation

KITTI 2012 KITTI 2015 Sintel (Clean) KITTI 2015 City BDD Map

PSMNet GwcNet PSMNet GwcNet PwcNet RAFT PwcNet RAFT ResNet50-FCN

7 7 27.4 11.7 29.3 12.8 2.55 1.43 33.7 17.4 30.1 30.0 27.6

3 7 8.1 5.3 8.6 5.9 2.38 1.41 32.1 16.0 38.4 32.9 38.6

3 3 5.2 4.9 5.8 5.4 2.23 1.38 30.3 15.7 41.0 36.5 42.3

(a) Input (b) L1 (c) L2 (d) L3 (e) L4 (f) L5 (g) Prediction

Fig. 10: Qualitative illustration of feature maps (unit vector) extracted by semantic segmentation network (FCN) optimized
via different training configurations. For each example, the feature maps extracted using the baseline model, Cityscapes
fine-tuned model and ITSA model are included in the top to bottom rows, respectively. Similar feature representations are
learned by all models at early layers (L1-L3). However, feature maps with random patterns are exploited by the baseline
model in penultimate (L4) and final (L5) layers for prediction.

5.3 Feature Analysis for Dense Prediction Tasks

In this section, we analyze the feature maps extracted by
dense prediction networks that are optimized via different
training configurations: (1) Baseline: trained on synthetic
dataset only, (2) fine-tuned: pre-trained on synthetic dataset
and fine-tuned on realistic datasets (KITTI for stereo match-
ing networks and Cityscapes for semantic segmentation
networks) and (3) ITSA: trained on synthetic data only,
using our proposed method. The channel dimension of all
feature maps is reduced to three, using the Principle Compo-
nent Analysis (PCA) approach. The pixel-wise normalized
feature vector (unit vector) and vector magnitude are then
computed using the dimensionally reduced feature maps.

5.3.1 Stereo Matching Networks

As depicted in Fig. 9, the baseline and fine-tuned models
learn to exploit features with substantial random patterns

for disparity estimation. Moreover, feature maps with sig-
nificantly lesser information (activation) are extracted by the
fine-tuned model when tested on a different domain (e.g.
Middlebury). We argue that these models have learned to
exploit domain-specific spurious features and therefore fail
to generalize to unseen domains. In contrast, our ITSA
model can extract features with rich structural details (e.g.
edges and corners), which is crucial for stereo matching. As
a result, the ITSA model can generate accurate and detailed
disparity measurements in multiple realistic domains, de-
spite the model being trained on synthetic data only.

5.3.2 Semantic Segmentation Networks

For the semantic segmentation task, the models are ex-
pected to extract the same features for pixels of the same
object (e.g. cars, person). Interestingly, we found that all
three models (baseline, fine-tuned and ITSA) learn to extract
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similar feature representations at the early layers (e.g. L1-
L3 shown in Fig. 10). However, the feature maps extracted
by the baseline model differ significantly from the other
models at the last two layers (L4 and L5). As illustrated
in Fig. 10, the baseline model extracts feature maps with
random patterns in the penultimate layer (L4), which sug-
gests the exploitation of spurious features. From this insight,
we conjecture that learning spurious features is more likely
to occur at deeper layers (the penultimate and final layers).
Dissimilar to stereo matching networks, the ITSA semantic
segmentation network behaves similarly to the fine-tuned
one even at later layers, where feature representations with
rich semantic details are extracted (objects such as trees,
cars, roads and signs are clearly visible in L4 and L5).
This observation suggests that both ITSA and fine-tuned
models do not include spurious features for prediction, and
both models should achieve comparable performance. The
latter is supported by results included in Tab. 12, where
the ITSA model can achieve comparable performance as
the Cityscapes fine-tuned (CS-FT) model on challenging
anomalous scenes.

6 CONCLUSION

In this work, we have introduced a general yet effective
algorithm to mitigate shortcut learning, and improve the
performance of synthetic-to-realistic domain generalization
in dense prediction networks. Specifically, we proposed
the ITSA: a novel information theory-based approach that
minimizes the sensitivity of the extracted feature represen-
tations to the input perturbations, measured via the Fisher
information. We further proposed an efficient algorithm to
optimize the Fisher information objective in dense predic-
tion networks such as motion correspondence estimation
networks (stereo matching and optical flow) and semantic
segmentation networks. Extensive experimental results il-
lustrated that the proposed method consistently promotes
the learning of robust and shortcut-invariant features, and
substantially enhances the performance of the dense pre-
diction networks in cross-domain generalization. Despite
training on synthetic data only, our proposed method can
remarkably enhance the robustness of the dense prediction
networks and performs favourably as compared to their
fine-tuned counterparts in realistic anomalous scenarios.

REFERENCES

[1] R. Strudel, R. Garcia, I. Laptev, and C. Schmid, “Segmenter: Trans-
former for semantic segmentation,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021, pp. 7262–7272. 1

[2] Z. Huang, X. Wang, L. Huang, C. Huang, Y. Wei, and W. Liu,
“Ccnet: Criss-cross attention for semantic segmentation,” in Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision,
2019, pp. 603–612. 1

[3] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam,
“Encoder-decoder with atrous separable convolution for semantic
image segmentation,” in Proceedings of the European conference on
computer vision (ECCV), 2018, pp. 801–818. 1

[4] F. Zhang, V. Prisacariu, R. Yang, and P. H. Torr, “Ga-net: Guided
aggregation net for end-to-end stereo matching,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2019, pp. 185–194. 1, 3, 7, 8

[5] Z. Shen, Y. Dai, and Z. Rao, “Cfnet: Cascade and fused cost
volume for robust stereo matching,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), June
2021, pp. 13 906–13 915. 1, 3, 6, 7, 8, 9, 10

[6] V. Tankovich, C. Hane, Y. Zhang, A. Kowdle, S. Fanello, and
S. Bouaziz, “Hitnet: Hierarchical iterative tile refinement network
for real-time stereo matching,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, pp.
14 362–14 372. 1

[7] Z. Teed and J. Deng, “Raft: Recurrent all-pairs field transforms for
optical flow,” in European conference on computer vision. Springer,
2020, pp. 402–419. 1, 3, 9, 11, 15

[8] G. Yang and D. Ramanan, “Volumetric correspondence networks
for optical flow,” Advances in neural information processing systems,
vol. 32, 2019. 1, 3, 9

[9] S. Zhao, Y. Sheng, Y. Dong, E. I. Chang, Y. Xu et al., “Maskflownet:
Asymmetric feature matching with learnable occlusion mask,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020, pp. 6278–6287. 1, 3, 9, 11

[10] F. Zhang, O. J. Woodford, V. A. Prisacariu, and P. H. Torr,
“Separable flow: Learning motion cost volumes for optical flow
estimation,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2021, pp. 10 807–10 817. 1, 9, 12

[11] W. Chen, Z. Yu, S. Mello, S. Liu, J. M. Alvarez, Z. Wang, and
A. Anandkumar, “Contrastive syn-to-real generalization,” Interna-
tional Conference on Learning Representations, 2021. 1, 11

[12] S. Beery, G. Van Horn, and P. Perona, “Recognition in terra
incognita,” in Proceedings of the European Conference on Computer
Vision (ECCV), September 2018. 1, 4

[13] R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wichmann,
and W. Brendel, “Imagenet-trained cnns are biased towards tex-
ture; increasing shape bias improves accuracy and robustness,”
arXiv preprint arXiv:1811.12231, 2018. 1, 4

[14] B. Shi, D. Zhang, Q. Dai, Z. Zhu, Y. Mu, and J. Wang, “Informative
dropout for robust representation learning: A shape-bias perspec-
tive,” in International Conference on Machine Learning. PMLR, 2020,
pp. 8828–8839. 1, 4

[15] R. Geirhos, J.-H. Jacobsen, C. Michaelis, R. Zemel, W. Brendel,
M. Bethge, and F. A. Wichmann, “Shortcut learning in deep neural
networks,” arXiv preprint arXiv:2004.07780, 2020. 1, 2, 4, 5, 7

[16] F. M. Carlucci, A. D’Innocente, S. Bucci, B. Caputo, and T. Tom-
masi, “Domain generalization by solving jigsaw puzzles,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 2229–2238. 1, 4

[17] Y. Tang, Z. Jiang, Z. Xie, Y. Cao, Z. Zhang, P. H. Torr, and
H. Hu, “Breaking shortcut: Exploring fully convolutional cycle-
consistency for video correspondence learning,” arXiv preprint
arXiv:2105.05838, 2021. 1

[18] M. Minderer, O. Bachem, N. Houlsby, and M. Tschannen, “Auto-
matic shortcut removal for self-supervised representation learn-
ing,” in International Conference on Machine Learning. PMLR, 2020,
pp. 6927–6937. 1, 4

[19] N. Dagaev, B. D. Roads, X. Luo, D. N. Barry, K. R. Patil, and B. C.
Love, “A too-good-to-be-true prior to reduce shortcut reliance,”
arXiv preprint arXiv:2102.06406, 2021. 1, 4

[20] N. Tishby and N. Zaslavsky, “Deep learning and the information
bottleneck principle,” in 2015 IEEE Information Theory Workshop
(ITW). IEEE, 2015, pp. 1–5. 1, 4

[21] A. Pensia, V. Jog, and P.-L. Loh, “Extracting robust and accurate
features via a robust information bottleneck,” IEEE Journal on
Selected Areas in Information Theory, vol. 1, no. 1, pp. 131–144, 2020.
2, 4, 5

[22] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and
harnessing adversarial examples,” arXiv preprint arXiv:1412.6572,
2014. 2

[23] W. Chuah, R. Tennakoon, R. Hoseinnezhad, A. Bab-Hadiashar, and
D. Suter, “Itsa: An information-theoretic approach to automatic
shortcut avoidance and domain generalization in stereo matching
networks,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022. 2

[24] J.-R. Chang and Y.-S. Chen, “Pyramid stereo matching network,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 5410–5418. 3, 6, 7, 8, 9, 10, 15

[25] A. Kendall, H. Martirosyan, S. Dasgupta, P. Henry, R. Kennedy,
A. Bachrach, and A. Bry, “End-to-end learning of geometry and
context for deep stereo regression,” in Proceedings of the IEEE
International Conference on Computer Vision, 2017, pp. 66–75. 3

[26] H. Xu and J. Zhang, “Aanet: Adaptive aggregation network for
efficient stereo matching,” arXiv preprint arXiv:2004.09548, 2020. 3

[27] D. Sun, X. Yang, M.-Y. Liu, and J. Kautz, “Pwc-net: Cnns for optical
flow using pyramid, warping, and cost volume,” in Proceedings of



PRE-PRINT OF THE PAPER PUBLISHED IN IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE. SUBJECT TO COPYRIGHT 17

the IEEE conference on computer vision and pattern recognition, 2018,
pp. 8934–8943. 3, 9, 11, 15

[28] F. Zhang, X. Qi, R. Yang, V. Prisacariu, B. Wah, and P. Torr,
“Domain-invariant stereo matching networks,” in European Con-
ference on Computer Vision. Springer, 2020, pp. 420–439. 3, 7, 8,
9

[29] R. Geirhos, J.-H. Jacobsen, C. Michaelis, R. Zemel, W. Brendel,
M. Bethge, and F. A. Wichmann, “Shortcut learning in deep
neural networks,” Nature Machine Intelligence, vol. 2, no. 11,
pp. 665–673, 2020. [Online]. Available: https://doi.org/10.1038/
s42256-020-00257-z 3

[30] X. Pan, P. Luo, J. Shi, and X. Tang, “Two at once: Enhancing
learning and generalization capacities via ibn-net,” in Proceedings
of the European Conference on Computer Vision (ECCV), 2018, pp.
464–479. 3, 11, 13

[31] S. Choi, S. Jung, H. Yun, J. T. Kim, S. Kim, and J. Choo, “Robustnet:
Improving domain generalization in urban-scene segmentation
via instance selective whitening,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, pp.
11 580–11 590. 3, 4, 11, 12, 13

[32] D. Peng, Y. Lei, L. Liu, P. Zhang, and J. Liu, “Global and local tex-
ture randomization for synthetic-to-real semantic segmentation,”
IEEE Transactions on Image Processing, vol. 30, pp. 6594–6608, 2021.
3, 4, 11

[33] X. Yue, Y. Zhang, S. Zhao, A. Sangiovanni-Vincentelli, K. Keutzer,
and B. Gong, “Domain randomization and pyramid consistency:
Simulation-to-real generalization without accessing target domain
data,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2019, pp. 2100–2110. 3, 4, 11

[34] X. Pan, X. Zhan, J. Shi, X. Tang, and P. Luo, “Switchable whitening
for deep representation learning,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2019, pp. 1863–1871. 3

[35] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Interna-
tional conference on machine learning. PMLR, 2015, pp. 448–456.
3

[36] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Instance normaliza-
tion: The missing ingredient for fast stylization,” arXiv preprint
arXiv:1607.08022, 2016. 3

[37] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Im-
agenet: A large-scale hierarchical image database,” in 2009 IEEE
conference on computer vision and pattern recognition. Ieee, 2009, pp.
248–255. 4

[38] J. Huang, D. Guan, A. Xiao, and S. Lu, “Fsdr: Frequency space do-
main randomization for domain generalization,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 6891–6902. 4, 11, 12

[39] S. Lee, H. Seong, S. Lee, and E. Kim, “Wildnet: Learning domain
generalized semantic segmentation from the wild,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, 2022, pp. 9936–9946. 4, 11

[40] D. Duckworth, E. S. Dyer, J. Sohl-dickstein, N. Wadia,
and S. S. Schoenholz, Eds., Whitening and second order
optimization both destroy information about the dataset, and
can make generalization impossible, 2021. [Online]. Available:
http://proceedings.mlr.press/v139/wadia21a/wadia21a.pdf 4

[41] H. Wang, Z. He, Z. L. Lipton, and E. P. Xing, “Learning
robust representations by projecting superficial statistics out,” in
International Conference on Learning Representations, 2019. [Online].
Available: https://openreview.net/forum?id=rJEjjoR9K7 4

[42] B. Recht, R. Roelofs, L. Schmidt, and V. Shankar, “Do imagenet
classifiers generalize to imagenet?” in International Conference on
Machine Learning. PMLR, 2019, pp. 5389–5400. 4

[43] D. Hendrycks and T. Dietterich, “Benchmarking neural network
robustness to common corruptions and perturbations,” Proceedings
of the International Conference on Learning Representations, 2019. 4

[44] A. Alemi, I. Fischer, J. Dillon, and K. Murphy, “Deep variational
information bottleneck,” in ICLR, 2017. [Online]. Available:
https://arxiv.org/abs/1612.00410 4

[45] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998. 5

[46] Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by
backpropagation,” in International conference on machine learning.
PMLR, 2015, pp. 1180–1189. 5

[47] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y.
Ng, “Reading digits in natural images with unsupervised feature

learning,” in NIPS Workshop on Deep Learning and Unsupervised
Feature Learning 2011, 2011. [Online]. Available: http://ufldl.
stanford.edu/housenumbers/nips2011 housenumbers.pdf 5

[48] J. Denker, W. Gardner, H. Graf, D. Henderson, R. Howard,
W. Hubbard, L. D. Jackel, H. Baird, and I. Guyon, “Neural network
recognizer for hand-written zip code digits,” Advances in neural
information processing systems, vol. 1, 1988. 5

[49] Y. Shi, J. Seely, P. H. Torr, N. Siddharth, A. Hannun, N. Usunier,
and G. Synnaeve, “Gradient matching for domain generalization,”
arXiv preprint arXiv:2104.09937, 2021. 5

[50] X. Guo, K. Yang, W. Yang, X. Wang, and H. Li, “Group-wise
correlation stereo network,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2019, pp. 3273–3282. 6,
7, 8, 9, 10, 15

[51] Z. Yin, T. Darrell, and F. Yu, “Hierarchical discrete distribution
decomposition for match density estimation,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 6044–6053. 7, 8, 9

[52] X. Gu, Z. Fan, S. Zhu, Z. Dai, F. Tan, and P. Tan, “Cascade cost vol-
ume for high-resolution multi-view stereo and stereo matching,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020, pp. 2495–2504. 7, 8

[53] C. Cai, M. Poggi, S. Mattoccia, and P. Mordohai, “Matching-
space stereo networks for cross-domain generalization,” in 2020
International Conference on 3D Vision (3DV), 2020, pp. 364–373. 7

[54] N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers, A. Dosovitskiy,
and T. Brox, “A large dataset to train convolutional networks for
disparity, optical flow, and scene flow estimation,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 4040–4048. 7, 10

[55] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2012. 7, 9

[56] M. Menze, C. Heipke, and A. Geiger, “Object scene flow,” ISPRS
Journal of Photogrammetry and Remote Sensing (JPRS), 2018. 7, 8, 9,
10, 11

[57] D. Scharstein, H. Hirschmüller, Y. Kitajima, G. Krathwohl,
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P. v.d. Smagt, D. Cremers, and T. Brox, “Flownet: Learning optical
flow with convolutional networks,” in IEEE International Confer-
ence on Computer Vision (ICCV), 2015. [Online]. Available: http:
//lmb.informatik.uni-freiburg.de/Publications/2015/DFIB15 10

[71] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black, “A naturalistic
open source movie for optical flow evaluation,” in European Conf.
on Computer Vision (ECCV), ser. Part IV, LNCS 7577, A. Fitzgibbon
et al. (Eds.), Ed. Springer-Verlag, Oct. 2012, pp. 611–625. 10, 11

[72] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov,
P. Van Der Smagt, D. Cremers, and T. Brox, “Flownet: Learning
optical flow with convolutional networks,” in Proceedings of the
IEEE international conference on computer vision, 2015, pp. 2758–
2766. 11

[73] J. Hur and S. Roth, “Iterative residual refinement for joint optical
flow and occlusion estimation,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp.
5754–5763. 11

[74] F. Aleotti, M. Poggi, and S. Mattoccia, “Learning optical flow from
still images,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2021, pp. 15 201–15 211. 11

[75] S. Jiang, Y. Lu, H. Li, and R. Hartley, “Learning optical flow
from a few matches,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2021, pp. 16 592–16 600.
11

[76] S. Jiang, D. Campbell, Y. Lu, H. Li, and R. Hartley, “Learning
to estimate hidden motions with global motion aggregation,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2021, pp. 9772–9781. 11

[77] S. R. Richter, V. Vineet, S. Roth, and V. Koltun, “Playing for data:
Ground truth from computer games,” in European conference on
computer vision. Springer, 2016, pp. 102–118. 12, 13

[78] G. Neuhold, T. Ollmann, S. Rota Bulo, and P. Kontschieder, “The
mapillary vistas dataset for semantic understanding of street
scenes,” in Proceedings of the IEEE international conference on com-
puter vision, 2017, pp. 4990–4999. 12, 13

[79] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional net-
works for semantic segmentation,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2015, pp. 3431–
3440. 12, 15

[80] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770–778. 12

[81] H. Ding, X. Jiang, B. Shuai, A. Q. Liu, and G. Wang, “Semantic
correlation promoted shape-variant context for segmentation,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 8885–8894. 12

[82] R. Liu, Z. Wu, S. Yu, and S. Lin, “The emergence of objectness:
Learning zero-shot segmentation from videos,” Advances in Neural
Information Processing Systems, vol. 34, 2021. 12

[83] W. Chen, Z. Yu, Z. Wang, and A. Anandkumar, “Automated
synthetic-to-real generalization,” in International Conference on Ma-
chine Learning. PMLR, 2020, pp. 1746–1756. 13

http://lmb.informatik.uni-freiburg.de/Publications/2015/DFIB15
http://lmb.informatik.uni-freiburg.de/Publications/2015/DFIB15

	Introduction
	Related Work
	Synthetic-to-Realistic Domain Generalization for Dense Prediction Vision Tasks
	Correspondence Estimation
	Semantic Segmentation

	Shortcut Learning

	Methodology
	Problem Statement
	Motivation: Toy Example
	Robust Information Bottleneck and Fisher Information
	Approximating Fisher information
	Shortcut Perturbation (SCP)

	Experiments
	Stereo Matching and Disparity Estimation
	Datasets Description
	Implementation Details
	Shortcut Analysis
	Synthetic-to-Realistic Domain Generalization
	Network Robustness Analysis

	Optical Flow Estimation
	Datasets Description
	Implementation Details
	Shortcut Analysis
	Synthetic-to-Realistic Domain Generalization

	Semantic Segmentation
	Datasets Description
	Implementation Details
	Shortcut Analysis
	Synthetic-to-Realistic Domain Generalization
	Network Robustness Analysis


	Discussions
	Ablation Study
	Hyper-parameters Selection Strategy
	Feature Analysis for Dense Prediction Tasks
	Stereo Matching Networks
	Semantic Segmentation Networks


	Conclusion
	References

