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Abstract—Autonomous vehicles in intelligent transportation
systems must be able to perform reliable and safe navigation.
This necessitates accurate object detection, which is commonly
achieved by high-precision depth perception. Existing stereo
vision-based depth estimation systems generally involve com-
putation of pixel correspondences and estimation of disparities
between rectified image pairs. The estimated disparity values will
be converted into depth values in downstream applications. As
most applications often work in the depth domain, the accuracy
of depth estimation is often more compelling than disparity
estimation. However, at large distances (> 50m), the accuracy of
disparity estimation does not directly translate to the accuracy of
depth estimation. In the context of learning-based stereo systems,
this is mainly due to biases imposed by the choices of the
disparity-based loss function and the training data. Consequently,
the learning algorithms often produce unreliable depth estimates
of under-represented foreground objects, particularly at large
distances. To resolve this issue, we first analyze the effect of those
biases and then propose a pair of depth-based loss functions for
foreground objects and background separately. These loss func-
tions can be tuned and can balance the inherent bias of the stereo
learning algorithms. The efficacy of our solution is demonstrated
by an extensive set of experiments, which are benchmarked
against state of the art. We show on the KITTI 2015 benchmark
that our proposed solution yields substantial improvements in
disparity and depth estimation, particularly for objects located
at distances beyond 50 meters, outperforming the previous state
of the art by 10%.

Index Terms—stereo matching, depth estimation, disparity
estimation, loss function

I. INTRODUCTION

ACCURATE depth perception is critical in intelligent
transportation applications such as autonomous driving.

The safety of autonomous vehicles strongly correlates with the
precision of depth measurements. Precise depth measurements
enable reliable cruise control [2], accurate object detection
and avoidance [3]–[5], accurate object recognition and classi-
fication for efficient lane change and other manoeuvring, and
many other applications. Furthermore, precise 3D positions
of selected landmarks will result in accurate localization of
autonomous vehicles [6]. Therefore, reliable and precise depth
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Fig. 1: An example of back-projected 3D points and estimated
disparity of an object at 43 meters from the camera (image
000038 10 of KITTI 2015 dataset). Ground truth points
are plotted in magenta and predicted points are shown in
green. Top and bottom rows show the result of the baseline
method [1] and our proposed method. The picture shows
that the proposed method significantly improves the depth
estimation of a far object. (Best view in colors and zoom in
for details.)

information is required to avoid catastrophic road accidents.
Laser-based systems such as LiDAR are commonly employed
for measuring depth. LiDAR is well known for its accuracy
and precision where the captured depth only has errors of an
order of centimetres and is currently used in many autonomous
vehicles. However, it also has some serious practical limita-
tions, such as a high price tag, reliability issues in different
environments and limited resolution [7]. Furthermore, when
dealing with long-distance measurements, LiDAR suffers from
possible misalignment with other camera sensors due to dif-
ferent coordinate systems and synchronization issues among
multiple sensors with varying acquisition periods [8].

A feasible alternative approach to achieve reliable long-
range depth estimation is via camera-based depth perception
using stereo matching algorithms. However, conventional dis-
crete stereo matching algorithms such as semi-global match-
ing (SGM) [9] are prone to pixel-locking (e.g. biased distri-
bution of sub-pixel disparity values towards the integer val-
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Fig. 2: Variations of the disparity loss term (a pixel disparity
error term) with the depth of the pixel, corresponding to 1
meter depth error.

ues) [10]. Therefore, these approaches fail to compute accurate
disparity at large distances. To alleviate this problem, various
methods such as two-stage shifted matching [11], symmetric
refinement [12] and disparity smoothing filters [13] were
proposed. On the contrary, stereo matching algorithms that
are designed to regress continuous disparity values [14] do not
suffer from pixel-locking and have been shown to outperform
discrete algorithms, especially for long-range depth estimation.

In recent years, there has been significant interest in devel-
oping end-to-end learning-based stereo matching models to
regress disparity from a rectified pair of stereo images. As
these learning-based stereo matching models are designed to
estimate continuous disparity values, they are resistant to pixel-
locking bias. However, the combination of existing disparity-
based loss functions and the commonly used training data (e.g.
KITTI [15], [16]) biases the models toward emphasizing more
on objects and background areas located at near distances,
at the expense of farther objects [17], [18]. This effect can
exceptionally be detrimental in safety-relevant driver assis-
tance applications, where distant objects are of interest (e.g.
high speed driving on highways [19]). In this work, we aim
to improve the long-range depth estimation performance of
learning-based stereo matching models, by alleviating the
biases caused by the training data and loss function.

Before discussing the identified problems in learning-based
stereo disparity estimation algorithms, it may be useful to
clarify the key terms such as: (1) near, middle distance, and far
and (2) foreground / background. The three terms (near, middle
distance, and far) have obvious meanings, at least in terms of
relative order. In most cases, these terms are associated with
some thresholds that are somewhat context, or application,
dependent. Thus, it is naive to expect that any fixed setting of
these thresholds will be universally useful. In this work, we
selected reasonable thresholds that are appropriate for the com-
mon datasets that are designed for different autonomous nav-
igation scenarios. While the terms (background / foreground)
may suggest of far and near distinction, in this paper, we
refer foreground as “certain objects of interest” (depending
on the application) and the rest as background. For instance,
in our analysis, we have purposely chosen objects that are
semantically important in autonomous navigation tasks as
foreground (e.g. pedestrians and land vehicles) and others such
as buildings, vegetation and sky areas as background.

To tackle the aforementioned problems, we first analyze
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Fig. 3: Distribution of pixels associated with different distances
in KITTI 2012 [15] and KITTI 2015 [16] stereo dataset.

the emphasis and bias of different depth estimation meth-
ods. In most of the learning-based stereo disparity estima-
tion algorithms, the implemented loss functions are usually
disparity-based [1], [20]–[25]. However, the disparity-based
loss function does not uniformly penalize errors at different
distances [17]. As illustrated in Figure 2, one metre error at any
distance between 0 − 80 meters translates to disparity-based
losses that would penalize nearby objects (≤ 20 m) much
higher than far objects. Consequently, the disparity-based loss
function biases the training process towards nearby objects
and deteriorates the long-range depth estimation performance
of the resulting models.

Furthermore, due to the inevitable attribute of the nature that
is primarily caused by the perspective-effect (e.g. foreshort-
ening where faraway objects appear to be smaller and vice
versa), the front-view of most driving scenes is dominated by
(1) foreground that is close to the camera or (2) background
(often at a distance). For example, in KITTI 2015 [16],
approximately 65% of total pixels in an image are background
and have depth value ≤ 20m. More severely, as the foreground
often appears to be smaller in size when located at a distance,
only 2% of the total pixels are foreground and have depth value
> 20m. The details of pixel data distribution are included in
Table I and Figure 3.

Therefore, final solutions of the learning algorithms, utiliz-
ing the disparity-based loss functions and the mentioned train-
ing data, will result in estimates biased towards the background
and are somewhat “blinded” to the foreground (especially
those positioned at farther distances). For example, as illus-
trated in Fig. 1, the depth estimates resulted by PSMNet [1]
without addressing the bias issues can be highly unreliable for
distant objects (a car located 43 meters from the camera). To
address these bias issues, we propose to adjust the bias of the
conventional stereo learning algorithms to emphasize on far
and foreground objects without losing sight of the close-by
objects and background areas.

In short, we propose a simple yet effective solution for
regularizing the bias of learning-based stereo disparity esti-
mation algorithms by adjusting the loss function based on the
notion of relevant depth ranges and scene contents (e.g. objects
positioned at ‘mid-range’ or ‘far’ distances in an autonomous
navigation scenario). More specifically, we use a depth-based
loss function that is divided into foreground and background
segments using an off-the-shelf object detector to balance the
bias between the two classes. This allows additional and tun-
able penalization of errors across these classes. The proposed
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method can be easily implemented; it is model-agnostic and
does not introduce any computational cost overhead during
inferencing.

Although shifting the bias or preference of a stereo disparity
estimation algorithm from disparity to depth may suggest some
deterioration in the performance for the nearby objects and
background areas (as depth is reciprocal to disparity), our
results demonstrate otherwise. Extensive experiments demon-
strate that the proposed loss functions can significantly im-
prove the overall accuracy of disparity and depth estimates
at all distances and outperform the baseline stereo disparity
estimation algorithm (trained using the disparity loss function).
Furthermore, our method also attains state-of-the-art long-
range stereo depth estimation performance, outperforming
the previous method that utilizes accurate LiDAR (active)
measurements for depth refinements (SDN [17]).

The remainder of this paper is organized as follows. Sec-
tion II describes the related work in the field of learning-
based stereo matching networks and depth estimation, and 3D
object detection. Section III presents the proposed disparity
and depth-based loss functions. Section III also describes the
proposed weighted foreground and background loss functions.
Experimental results and discussions are presented in Sec-
tion IV, and Section V concludes the paper.

II. RELATED WORKS

A. Long-Range Depth Estimation

In analyzing the long-range stereo matching algorithms,
Pinggera et al. [10] classified those into two groups of discrete
(classification) or continuous (regression) methods, depending
on their output. While the discrete methods (e.g. Census [26],
semi global matching (SGM) [9] and MC-CNN [27]) are
computationally efficient, these methods suffer from the pixel-
locking effect due to the fact that the distribution of sub-
pixel disparity values is biased towards zero [11]. As depth
error at large distances is highly dependent on the accuracy of
sub-pixel disparity, discrete methods with pixel-locking effect
are unlikely to produce accurate long-range depth estima-
tions [10]. To mitigate the pixel-locking problem, different
techniques such as designing new matching costs [28] and in-
terpolation functions [8], [29] have been proposed. Moreover,
Nehab et al. [12] proposed symmetrical refinement technique
that exploits the inherent symmetry of matching cost functions
and simultaneously refines the matching coordinates in both
stereo images.

In contrast, methods that estimate disparity in the continuous
setting are free from the pixel-locking effect and have been
shown to outperform the discrete methods [10]. Examples
of continuous stereo matching algorithm include local dif-
ferential matching (LDM) [19], [30], [31], total variation
stereo (TV) [14] and learning-based approaches (GC-Net [32],
PSMNet [1], GANet [23]). Although the learning-based meth-
ods do not suffer from the pixel-locking bias, most of these
methods are prone to biases caused by the training data and
their loss functions (explained in Section I). In this work, we
propose a novel combination of loss functions to standardize
the learning attention across all distances and improve the

performance of long-range depth estimation in learning-based
stereo matching models.

B. Learning-Based Stereo Matching Networks

Recent works [1], [21], [23], [27], [33], [34] have shown that
stereo matching, using deep features, illustrate a significant
performance boost over traditional hand-crafted features like
SIFT [35] and ORB [36] features. Existing end-to-end stereo
matching networks utilized CNNs to (1) extract deep repre-
sentation from input stereo images, (2) perform cost volume
aggregations and (3) perform cost volume refinement.

In terms of taxonomy, end-to-end stereo matching networks
can be classified into two categories: (1) correlation-based
and (2) shifted concatenation-based cost volume construction
methods. The correlation-based networks consist of stacked
2D CNNs layers and have significantly lower processing time
due to the high efficiency of 2D convolution [20], [25],
[34], [37]. The concatenation based networks consist of a
combination of 2D CNNs for feature extraction and 3D CNNs
for cost volume aggregation and refinement [1], [23], [32].
An interesting exception is the idea of group-wise correlation-
based cost volume construction that was proposed to preserve
information loss of full correlation [21]. In terms of perfor-
mance, shifted concatenation-based networks with 3D CNNs
layers often outperform correlation-based networks (with 2D
CNNs layers) by a large margin, on popular benchmarks (e.g.,
SceneFlow [20], KITTI [16]).

To close the performance gaps between the correlation and
the shifted concatenation methods, several prior works include
context information such as edges [38] and semantics [39] into
the network. Moreover, Xu et al. [25] proposed AANet: which
consists of a new sparse points-based representation for intra-
scale aggregation and adaptive multi-scale cross aggregation
modules using 2D CNNs layers. As a result, AANet has
comparable performance to the shifted concatenated methods,
but with real-time inference speed.

Apart from the aforementioned supervised approaches, un-
supervised stereo matching networks [40]–[44] have also re-
ceived substantial amount of interest in recent years. These
methods typically rely on reconstruction-based loss function
to avoid ground truth supervision. As optimizing the net-
work using the reconstruction-based loss function only is
an ill-posed problem, other loss functions such as left-right
consistency [42], and occlusion-aware [40], [41] loss func-
tions were proposed to better constraint the overall learning
process. In an opposite direction, auxiliary tasks such as
optical flow [45], [46], motion segmentation [47] and semantic
segmentation [48] were also incorporated to further improve
the performance of stereo matching networks.

Despite all the advances in learning-based stereo matching
network, the relationship between disparity and depth is rarely
discussed. As mentioned in Section I, while current state-of-
the-art stereo matching network is capable of performing dis-
parity estimation with high accuracy, the accuracy in disparity
estimation does not translate directly to the accuracy in depth
estimation, especially for objects that are far away from the
camera. In contrast, we turn our attention to this problem



PRE-PRINT OF THE PAPER PUBLISHED IN IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION. SUBJECT TO COPYRIGHTS OF THE PUBLISHER. 4

TABLE I: Pixel data distribution of KITTI 2015 dataset.

≤ 20 m >20 m Total

Foreground 14.90% 1.91% 16.81%

Background 64.79% 18.40% 83.19%

Total 79.69% 20.31% 100.00%

and propose a simple yet effective solution, which allows
our method to improve the performance of both disparity and
depth estimation, particularly for far away foreground objects.

C. Semantic-Guided Stereo Matching Networks

Semantic segmentation involves pixel-wise classification,
which provides valuable semantic information for scene under-
standing. It is commonly incorporated into different low-level
tasks such as optical flow [49], depth estimation [50]–[52]
and depth completion [53]. Similarly, semantic segmentation is
also incorporated in stereo matching task, to leverage its high-
level semantic cues. For example, Zhang et al. [48] proposed
DispSegNet, an unsupervised stereo matching network that
concatenates the semantic feature with initial disparity map
for refinement. Moreover, Dovesi et al. [54] proposed a real-
time stereo system named RTS2Net that concatenates semantic
class probabilities and disparity volume to calculate disparity
residual.

On the other hand, Yang et al. [39] proposed SegStereo
that incorporates semantic cues in stereo matching networks,
by concatenating deep semantic feature embedding with the
stereo cost volume. SegStereo consists of a disparity estima-
tion sub-network and a semantic segmentation sub-network
that are trained jointly, by using a combination of loss func-
tions consist of a weighted sum of the reconstruction error, a
smoothness term, and a segmentation error. In addition, Wu et
al. [55] introduced SSPCV-Net that fuses multi-scale 4D cost
volumes with semantic features obtained using a semantic
segmentation sub-network, similar to SegStereo. The resulting
spatial pyramid cost volumes are aggregated, refined and
up-scaled, using a hourglass (e.g. encoder-decoder) module
followed by a 3D feature feature fusion module. The network
is optimized using a supervised disparity loss function and a
boundary-based smoothness term.

In contrast to the mentioned approaches, our method does
not include an additional semantic segmentation sub-network
or concatenation of semantic features. Instead, we aim to
learn the semantic relationship between foreground objects and
background areas to balance the learning bias between these
two classes in stereo matching networks.

D. Depth estimation and 3D object detection

Accurate depth information of moving (foreground) objects
such as pedestrians, transportation vehicles and cyclist is im-
portant in downstream applications such as 3D object detection
and autonomous navigation. There are several works that
concentrate on stereo depth estimation for 3D object detection.
For instance, Pon et al. [56] proposed a stereo matching
network that focuses on objects of interest while neglecting

the background. Qian et al. [18] proposed to combine stereo
matching and 3D object detection networks into a single
pipeline, by designing a novel differentiable module to convert
predicted depth maps to pseudo-LiDAR [3]. They used the
same stereo matching network proposed in [17].

Although existing methods can achieve impressive results
for 3D object detection from RGB images, the performance
deteriorates as the distance increases due to the factors dis-
cussed in Section I. In this context, You et al. [17] proposed
SDN, aiming to improve the long range depth estimation by
converting a disparity-based stereo matching network [1] into
a depth-based stereo matching one. The proposed network
converts the disparity cost volume to a depth cost volume thus
regressing a depth value for each pixel (instead of disparity).
They further proposed a depth propagation algorithm, which
fuses extremely sparse (4-beam) LiDAR to rectify the initial
depth estimation.

In contrast, we aim to improve the performance of depth
estimation of a stereo matching network by adjusting the
bias in the common training loss functions and selected
datasets. We propose to carefully balance the training signals,
preventing any over-emphasis on backgrounds or close objects,
as mentioned in Section I. As a result, the proposed method
achieves significant improvement in disparity and depth es-
timation, particularly for distant objects, over the baseline
method. More importantly, our results are on par with the
variant of the mentioned prior work SDN + GDC [17], without
using any additional information such as sparse LiDAR data
points.

III. PROPOSED METHOD

In this section, we will discuss our proposed loss functions
and the overall framework. The results of our experimental
and ablation studies are presented in Section IV.

A. Loss Function

As the performance of supervised learning neural network
largely depends on its loss function, it is crucial to select
the appropriate loss function carefully. Also, an optimally
designed loss function can mitigate the adverse effect of bias
(such as data imbalance, class imbalance) in the training
dataset, and therefore improve the overall performance of
the trained model [57]. We show that naively employing the
disparity-based loss function and the biased training dataset
would cause the trained model to overfit1 to nearby objects
and background areas, diminishing the accuracy of long-range
depth estimations. To remedy these bias issues, we propose
to redesign the loss function by including foreground and
background specific depth-based loss functions.

1We define overfit as: a network is learning to fit accurately at a certain part
of the data (dominant data points) with the expenses of lower accuracy for
other parts. This is different from the general definition of overfit in machine
learning: a network is learning to also fit the noise in the training data, and
negatively impacts the network capability to generalize to new data.
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1) Disparity-based loss function: The disparity-based loss
function is implemented to enable the stereo matching net-
work to learn the regression of disparity for each pixel. The
commonly employed smooth L1 disparity-based loss function
is defined as:

Ldisp =
1

N

N∑
i=1

smoothL1
(Di − D̂i), (1)

in which

smoothL1(x) =

{
0.5x2 if |x| < 1
|x| − 0.5, otherwise

where D̂i and Di are the predicted and ground truth disparity
values for pixel i, and N is the number of valid pixels.

2) Depth-based loss function: As it was discussed in Sec-
tion I and shown in Fig. 2, the disparity-based loss function
given by Eq. (1) is heavily biased and its minimization would
only lead to accurate depth estimates for pixels of nearby
objects. To address this issue, we include a depth-based loss
function, which is similar to the loss function implemented in
the Stereo Depth Network (SDN) [17].

However, in contrast to the SDN, the disparity cost volume
will not be converted to depth cost volume within the network.
We instead propose to convert the predicted disparity map to
depth map to ensure our proposed network does not regress
depth values. As our aim is to build a passive system, unlike
SDN, we do not include laser measurements (to refine our
results). The predicted dense disparity map, D̂, as well as its
corresponding ground truth, D, are converted to depth map,
Ẑ and Z, via

Z =
f × b
D

(2)

where f and b represent the focal length and baseline of the
stereo camera setup. Using those, the depth loss function is
defined as follows:

Ldepth =
1

N

N∑
i=1

smoothL1(Zi − Ẑi). (3)

However, replacing disparity-based with the depth-based
loss function comes at the price of having less accuracy for
close by objects (≤ 10m) [17]. Therefore, we propose to
include both disparity-based and depth-based loss functions.
The depth-based loss function regularizes the learning to avoid
solution that is over-fitted to the close distance pixels and vice
versa. By combining the merits of both loss functions, the
overall framework is able to predict accurate disparity / depth
for objects at a wide range of distances.

3) Weighted foreground and background loss functions: To
balance the bias between foreground and background, due to
class imbalance in training datasets, we propose to divide the
included depth-based loss function into two terms (foreground
and background specific). These terms will be weighted ac-
cordingly and the weighting policy will be explained later in
this section. We employ Mask R-CNN [58] pre-trained on
CityScapes dataset [59] to extract the foreground from the
background by performing foreground object segmentation.
An example of the segmented foreground object masks is
shown in Fig. 4.

Fig. 4: An example of object mask generated using a pre-
trained Mask-RCNN [58] on left image sequence 000123 10
of KITTI 2015 [16] stereo dataset.

For simplicity, we only considered transportation vehicles
including cars, trucks, vans, buses, bicycles and motorcycles as
foreground objects. However, this idea can easily be extended
to include other object types. We then combine the object
masks and the depth loss function, expressed in Eq. (3), to
obtain two new loss functions that are defined as:

Lfg
depth =

∑N
i=1

(
smoothL1

(Zi − Ẑi) · Bi
)

∑N
i=1 Bi

(4)

Lbg
depth =

∑N
i=1

(
smoothL1

(Zi − Ẑi) · (1− Bi)
)

∑N
i=1(1− Bi)

(5)

where B is the object masks, Lfg
depth is the foreground depth

loss and Lbg
depth is the background depth loss. Lastly, the

overall loss function is proposed as:

L = Ldisp + λ · Lfg
depth + (1− λ) · Lbg

depth (6)

where hyperparameter λ is included to balance the effect on
foreground and background learning.

Although the ratio of foreground and background shown in
Table I suggests weighting of 0.8 for foreground and 0.2 for
background (λ = 0.8), our experimental results demonstrate
otherwise. To investigate this phenomenon, extensive experi-
ments were conducted to study the properties of depth-based
loss function and effect of hyperparameter λ on the overall
performance of depth estimation, which will be discussed in
the next section.

B. Datasets

1) KITTI 2015: This dataset contains images of natural
scenes (city and rural areas and highways) collected in Karl-
sruhe, Germany. It contains 200 training stereo image pairs
with sparse ground truth disparities, collected using LiDAR
sensor; and 200 testing image pairs without ground truth
disparities. KITTI allows performance evaluation by submit-
ting final results to their evaluation server. Following [1],
we perform hold-out validation by splitting the 200 training
images into 160 for training and 40 for validation. All the
results presented in Section IV are computed using the same
validation set, unless stated otherwise.

2) DrivingStereo: This dataset is a large scale stereo
dataset, covering a diverse set of driving scenarios and differ-
ent weather conditions; containing over 174,437 stereo pairs
for training and 7751 pairs for testing [60]. Sparse ground
truth disparities are provided for the training sets only. We
use the DrivingStereo dataset to pre-train the stereo matching
model, before fine-tuning on smaller KITTI dataset. Similarly,
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TABLE II: Ablation study of disparity-based and depth-based loss function using the KITTI 2015 validation set. The stereo
matching networks are pre-trained on Scene Flow and fine-tuned on KITTI 2015 training set. All pixels are divided into bins
according to their true depth values. The performance of depth estimation at different depth intervals is evaluated using the

EPE metric. The results illustrate that including depth-based loss function can effectively improve the accuracy of depth
estimation, especially at far distances (≥ 20m).

Loss Function Range (m)

Ldisp Ldepth 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80

PSMNet [1]

0.12 0.38 0.89 1.50 2.42 3.69 5.39 6.47

0.12 0.35 0.87 1.51 2.48 3.68 5.12 5.89

0.13 0.40 0.86 1.46 2.33 3.53 4.61 5.66
GwcNet [21]

0.10 0.29 0.76 1.48 2.14 3.21 4.28 4.80

0.10 0.28 0.78 1.44 2.06 3.22 3.99 4.24

0.12 0.31 0.74 1.39 1.98 2.85 3.70 3.92

TABLE III: Ablation study of disparity-based and
depth-based loss function. The performance of long-range

disparity estimation is evaluated by computing the sub-pixel
disparity accuracy, using D1 error metric with 1 pixel and
0.5 pixel thresholds. Only objects and background that are

located 50− 80 meters away from the camera are considered
in this evaluation.

Ldisp Ldepth
PSMNet [1] GwcNet [21]

<1 px <0.5 px <1 px <0.5 px

17.48 39.84 13.18 34.56

12.04 28.74 8.52 27.16

9.71 23.91 8.50 26.69

the dataset is split into training and validation set. Four
subsets were randomly selected as the validation set while
the remaining are used for training.

3) Scene Flow: This dataset is a large collection of syn-
thetic stereo images with dense disparity ground truth. It
comprises three subsets with different settings: FlyingTh-
ings3D, Driving and Monkaa. It consists of 35,454 training
and 4,370 testing images. The size of each image is 960×540.
This dataset is used to train the stereo matching network, to
analyze the effect of the disparity-based (Ldisp) and the depth-
based (Ldepth) loss functions. The results demonstrate that,
by combining the two loss functions, can effectively improve
the performance of depth estimation, at all distances, and in
different scenarios (real-world and synthetic scenes).

C. Metrics

We evaluated the performance of disparity estimation using
the official D1 metrics, which compute the percentage of
outliers (endpoint-error (EPE) of < 3 pixels or < 5% based
on the ground truth) for foreground only, background only and
all pixels, respectively (D1-fg, D1-bg, D1-all). In addition, we
employed the D1 metric with different pixel thresholds (e.g.
1 pixel and 0.5 pixel) for points located between 50 and 80

(a) Baseline (b) Ours

Fig. 5: Qualitative results of Scene Flow dataset comparing the
performance of (a) disparity-based loss function and (b) the
combination of disparity-based and depth-based loss function.
By including depth-based loss function, superior results are
obtained especially for the pixels located at very far distances.

meters away from the camera, to analyze the performance of
long-range disparity estimation.

We also evaluated the performance of depth estimation
on the KITTI 2015 dataset. We divided all pixels to the
corresponding depth intervals (ranging between 0−80 meters)
based on the ground truth depth value. Then, EPE metric was
employed to evaluate the performance of depth estimation
within each distance interval. This metric provides valuable
insights on the performance of depth estimation at different
depth ranges.

D. Implementation details

The proposed loss functions are implemented in conjunc-
tion with network architecture proposed in PSMNet [1] and
GwcNet [21]. The PSMNet is an effective 3D stereo matching
network that is commonly used as backbone for disparity
estimation [3], [17], [24], [61], [62]. The GwcNet is a
recently proposed state-of-the-art stereo matching networks.
The networks are implemented using PyTorch framework and
is trained end-to-end with Adam (β1 = 0.9, β2 = 0.999)
optimizer. For pre-training, both networks are trained from
scratch using the DrivingStereo [60] dataset. All training
setups including data pre-processing, learning rate scheduling,
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TABLE IV: Ablation study of the proposed loss function combination using the KITTI 2015 [16] driving dataset. The stereo
matching networks are pre-trained on DrivingStereo datasets and fine-tuned on KITTI 2015 training set. The performances
of disparity estimation under different loss function settings are evaluated using D1 error metric (%), for foreground (Fg),

background (Bg) and all pixels respectively. * denotes the weighted Lfg
depth and Lbg

depth (λ = 0.6).

Loss Function PSMNet [1] GwcNet [21]

Ldisp Lfgdepth Lbgdepth D1-Fg D1-Bg D1-All D1-Fg D1-Bg D1-All

1.89 1.83 1.84 1.66 1.46 1.48

1.59 2.03 1.98 1.62 1.59 1.59

2.06 1.87 1.89 2.13 1.47 1.55

1.53 1.95 1.90 1.51 1.59 1.58

1.66 1.85 1.83 1.56 1.52 1.52

* * 1.59 1.83 1.80 1.54 1.51 1.51

* * 1.31 1.80 1.74 1.53 1.45 1.46

and number of epochs are exactly identical to the original
implementation of PSMNet and GwcNet, respectively.

In our implementation, we used the pre-trained models and
fine-tuned on KITTI 2015 [16] training set for 300 epochs.
The learning rate for fine-tuning process starts at 0.001 and is
decreased to 0.0001 after 200 epochs. Following [1], the fine-
tuning process of the PSMNet is prolonged to 1000 epochs
with learning rate begins at 0.001 and decreased to 0.0001
after 2

3 of total epochs before submission to KITTI evaluation
server. All results presented in Section IV are generated using
PSMNet and GwcNet that are pre-trained on DrivingStereo
and fine-tuned on KITTI 2015, unless stated otherwise. The
batch size for both networks is set to 12 for training on 2
NVIDIA RTX 6000 Quadro GPUs.

In addition, both models were also pre-trained on the Scene
Flow dataset and fine-tuned on KITTI 2015, to study the
effect of disparity-based (Ldisp) and depth-based (Ldepth) loss
function (refer to Table II). Similarly, the training procedures
were set to be identical to the original implementations.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

To validate the effectiveness of each component proposed
in this work, several experiments with different loss function
combinations are conducted using KITTI 2015 [16] validation
set and Scene Flow [20] testing sets.

A. Ablation study for disparity and depth loss functions

In this section, we investigate the regularization property
of the depth-based loss function, and how it impacts the per-
formance of our trained stereo matching networks at different
depth ranges. Depth-based loss function can mitigate the over-
fitting caused by the disparity-based loss function, by allowing
greater training signals for pixels with greater depth value.
As shown in Table II and Table III, training using only the
depth-based loss function achieved better accuracy for objects
located at greater distances (≥ 50m) compared to training
using disparity-based loss function.

Also, by combining the two loss functions, the network
achieves even better accuracy for objects located beyond
20m. Although the performance of the close distance pixels

TABLE V: Relationship between balancing term λ and the
performance of stereo disparity estimation in PSMNet and

GwcNet. The performance is evaluated using the D1 metric
for foreground (D1-Fg), background (D1-Bg) and

all (D1-All) pixels. The results illustrate that λ = 0.6 yields
the best performance in both PSMNet and GwcNet.

λ
PSMNet [1] GwcNet [21]

D1-Fg D1-Bg D1-All D1-Fg D1-Bg D1-All

0.0 2.06 1.87 1.89 2.13 1.47 1.55

0.2 1.68 1.87 1.84 2.04 1.43 1.50

0.4 1.46 1.81 1.77 1.66 1.49 1.51

0.5 1.43 1.83 1.78 1.67 1.51 1.52

0.6 1.31 1.80 1.74 1.53 1.45 1.46
0.8 1.69 2.00 1.96 1.63 1.52 1.53

1.0 1.59 2.03 1.98 1.62 1.59 1.59

(0 − 20m) have deteriorated slightly (around 0.02m), this is
a relatively small price to pay for significant improvement in
the accuracy of long range measurements.

Furthermore, it is interesting to note that depth-based loss
function also improves the accuracy of measurements for fore-
ground objects irrespective of their depth. Table IV shows that
by including the depth-based loss function (Ldisp + Ldepth),
the overall accuracy for foreground objects improved by 0.36%
in PSMNet and 0.15% in GwcNet. We further demonstrate
the effectiveness of depth-based loss function using the Scene
Flow dataset. As illustrated in Fig. 5, by including the depth-
based loss function, we have consistently achieved incredibly
low errors for distant foreground and background. The back-
ground of the image included in Fig. 5 has true disparity values
ranging between [1.1, 1.6] pixels.

B. Ablation study for foreground and background depth loss
functions

We tackle the imbalance between foreground and back-
ground by designing a pair of depth-based loss functions,
namely foreground specific Lfg

depth and background specific
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TABLE VI: Mean depth error (m) of KITTI 2015 validation set over various depth range. Our approach significantly
improved the accuracy for very far-away pixels without sacrificing the accuracy of closer objects.

Methods
Range (m)

0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80

SDN [17] 0.21 0.35 0.87 1.80 2.67 4.27 5.82 -

SDN+GDC [17] 0.21 0.35 0.84 1.74 2.59 4.14 5.72 -

LR-PSMNet 0.11 0.35 0.84 1.44 2.33 3.29 4.67 5.53

LR-GwcNet 0.10 0.29 0.71 1.35 1.93 2.70 3.69 3.81

TABLE VII: The online benchmark results on KITTI 2015
test sets. All included results are obtained from the official

KITTI 2015 benchmark.

Methods
D1-All (%) D1-Noc(%)

Bg Fg All Bg Fg All

AANet [25] 1.99 5.39 2.55 1.80 4.93 2.32

PSMNet [1] 1.86 4.62 2.32 1.71 4.31 2.14

SegStereo [39] 1.88 4.07 2.25 1.76 3.70 2.08

DeepPruner [63] 1.87 3.56 2.15 1.71 3.18 1.95

GwcNet [21] 1.74 3.93 2.11 1.61 3.49 1.92

GANet-15 [23] 1.55 3.82 1.93 1.40 3.37 1.73

CFNet [64] 1.54 3.56 1.88 1.43 3.25 1.73

Semantic-Guided Stereo Matching

DispSegNet [48] 4.20 16.97 6.33 3.86 15.89 5.85

RTS2Net [54] 3.09 5.91 3.56 - - -

SSPCVNet [55] 1.75 3.89 2.11 1.61 3.40 1.91

LR-GwcNet 1.67 4.19 2.09 1.53 3.77 1.90

LR-PSMNet 1.65 4.13 2.06 1.52 3.98 1.92

LR-CFNet 1.64 3.10 1.89 1.49 2.72 1.70

Lbg
depth, that are appropriately weighted. The ratio between the

foreground and background data, listed in Table I, suggests
a weighting of 0.8 for foreground and 0.2 for background
(λ = 0.8). However, from our experiments, we have found
that depth-based loss function has better performance for
foreground than background pixels. Therefore, by giving less
weights to the foreground pixels and more to background ones,
we may achieve a better balance. This is explained in the next
subsection.

To support our argument, we have conducted two additional
experiments using the disparity-based loss function with either
foreground specific (λ = 1) or background specific (λ = 0)
components. The results are tabulated in Table IV. Within ex-
pectation, the results demonstrated that Lfg

depth is advantageous
for foreground prediction. However, solely including Lbg

depth

worsens the accuracy for background as well as the overall
accuracy. Regardless, Lbg

depth is still required to improve the
accuracy of background located at far distances. As such, both
depth-based loss components are needed to improve the overall
accuracy at all distances.

C. Analysis of balancing term λ

Hyperparameter λ balances the contributions of foreground
specific Lfg

depth and background specific Lbg
depth components

to the total loss. We study the effect of λ using grid-search
between 0 and 1 with interval of 0.2. As it was mentioned
earlier, the ratio between foreground and background data in
the KITTI 2015 dataset implies the λ to be 0.8 for optimal
performance. However, we observed that the optimal results
for the overall, foreground and background errors are obtained
by setting λ = 0.6 in both PSMNet [1] and GwcNet [21] (refer
to Table V).

In addition, Table V also shows that including the Lfg
depth

in loss calculations (by setting λ > 0) lowers the D1 error for
foreground objects. However, the effect of including Lbg

depth is
less pronounced. A possible explanation for this observation
is that Lfg

depth and Lbg
depth somehow compliment each other

and by including a properly weighted combination of both
terms, the network produces better accuracy for background,
even though the depth-based loss function by itself does not
perform well for background depth measurement. However,
when the importance of Lbg

depth is reduced (say for λ ≥ 0.8),
the performance deteriorates quickly.

D. Performance analysis of long range depth estimation

In this section, we compare the performance of long range
depth estimation between the proposed method and the current
state-of-the-art technique (SDN [17]). We named our method
LR-PSMNet and LR-GwcNet (LR: Long Range). As listed in
Table VI, our method significantly improves the performance
of both models at different distances (0−80 meters), especially
for estimates with depth values greater than 50m. Compared
to SDN, LR-PSMNet and LR-GwcNet do not suffer from
performance deterioration for close-by objects as our loss
function combination is able to achieve good generalization
at all depth ranges. More importantly, our results outperform
the SDN + GDC method that uses sparse but accurate depth
information, measured by 4-beam LiDAR, to refine the depth
estimates [17].

E. KITTI 2015 leaderboard

Although our work focuses on long range depth estimation,
we also subjected the proposed method to KITTI performance
evaluation exercise. The overall results of LR-PSMNet and
LR-GwcNet was 2.06% and 2.09%, as listed in Table VII.
By carefully redesigning the loss function, we have achieved
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(a) Left Image (b) PSMNet [1] (c) LR-PSMNet (d) GwcNet [21] (e) LR-GwcNet
Fig. 6: Visualization of improvements over the baseline methods on KITTI 2015 dataset. For each example, predicted disparity
map is illustrated on top row and error map on the bottom row. Improved areas are highlighted with yellow box. The numerical
scale for color mapped on the error maps is provided on top of the figure. (Best viewed in color and zoom in for details.)

(a) Left Image (b) AcfNet (c) GANet (d) LR-PSMNet (e) LR-GwcNet

Fig. 7: Visualization results on KITTI 2015 dataset comparing our results with AcfNet [24] and GANet [23]. (Best viewed in
color and zoom in for details.)

D1-bg: 2.65 
D1-fg:  5.26
D1-all: 2.78

D1-bg: 1.01 
D1-fg:  0.42
D1-all: 0.90

(a) CFNet

D1-bg: 2.49 
D1-fg:  3.37
D1-all: 2.53

D1-bg: 0.99 
D1-fg:  0.33
D1-all: 0.88

(b) LR-CFNet

Fig. 8: Visualization of improvements of LR-CFNet over its
baseline CFNet [64] on KITTI 2015 dataset. Improved areas
are highlighted with red dashed box and the corresponding
D1 errors for foreground (D1-fg), background (D1-bg) and
all (D1-all) pixels are included in the top right corner of each
error map. (Best viewed in color and zoom in for details.)

remarkable improvement in the overall performance of stereo
disparity estimation in PSMNet and GwcNet. In addition, the
rank of the PSMNet [1] method is improved from rank 124
to 72 (recorded on 16th of March 2021). The qualitative
comparisons between PSMNet and GwcNet and their long

range variant (LR-PSMNet and LR-GwcNet) are included
in Fig. 6. The proposed approach also achieves comparable
disparity estimation accuracy for foreground and background
as compared to other high performing methods (AcfNet [24],
GANet [23]) - see Fig. 7 for details. Furthermore, the proposed
loss functions also improve the disparity estimation perfor-
mance of the recently proposed CFNet [64], for foreground
objects, with marginal trade-off for background areas. The
qualitative comparisons between CFNet and LR-CFNet are
also included in 8. Moreover, when evaluated on non-occluded
pixels, LR-CFNet outperforms the baseline CFNet (see Table
VII).

V. CONCLUSION

This paper shows that one can effectively improve the
performance of a depth estimation network for certain tasks
by adjusting the bias (modifying the loss function) of the
learning algorithm. We focused on improving the performance
of stereo depth estimation for objects positioned at mid-range
to far distances, which are arguably of interest in practical
applications of autonomous driving. The existing disparity-
based loss functions, and the commonly used training data,
biases the models towards emphasising more on near-by
objects and background areas at the expense of farther objects.
To this end, we advocate adjustment of the biases to align the
learning with a particular object-distance focus (by including
the proposed foreground and background specific depth-based
loss functions). We showed that including the depth-based loss
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function effectively improved the performance of depth esti-
mation for far-away objects, and by dividing it into foreground
and background terms, one can balance the bias between
the two classes. Our experimental results demonstrated that
the proposed method effectively shifted the emphasis of the
learning algorithm and achieved substantial improvement in
long range depth estimation while also improving the overall
disparity accuracy at all distances.
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