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Robust Model Fitting Using Higher Than Minimal
Subset Sampling

Ruwan B. Tennakoon, Alireza Bab-Hadiashar, Zhenwei Cao, Reza Hoseinnezhad and David Suter

Abstract—Identifying the underlying model in a set of data contaminated by noise and outliers is a fundamental task in computer vision.
The cost function associated with such tasks is often highly complex, hence in most cases only an approximate solution is obtained by
evaluating the cost function on discrete locations in the parameter (hypothesis) space. To be successful at least one hypothesis has to
be in the vicinity of the solution. Due to noise hypotheses generated by minimal subsets can be far from the underlying model, even
when the samples are from the said structure. In this paper we investigate the feasibility of using higher than minimal subset sampling
for hypothesis generation. Our empirical studies showed that increasing the sample size beyond minimal size (p), in particular up to
p+2, will significantly increase the probability of generating a hypothesis closer to the true model when subsets are selected from inliers.
On the other hand, the probability of selecting an all inlier sample rapidly decreases with the sample size, making direct extension of
existing methods unfeasible. Hence, we propose a new computationally tractable method for robust model fitting that uses higher than
minimal subsets. Here, one starts from an arbitrary hypothesis (which does not need to be in the vicinity of the solution) and moves
until either a structure in data is found or the process is re-initialized. The method also has the ability to identify when the algorithm has
reached a hypothesis with adequate accuracy and stops appropriately, thereby saving computational time. The experimental analysis
carried out using synthetic and real data shows that the proposed method is both accurate and efficient compared to the state-of-the-art
robust model fitting techniques.

Index Terms—Model fitting, Robust Statistics, hypothesis generation, data segmentation, higher than minimal subset sampling.
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1 INTRODUCTION

THE task of identifying the underlying model in a set
of data contaminated with both noise and outliers

is a highly researched area in computer vision. This task
has many applications, including motion segmentation
[1], [2], range image segmentation [3], [4], medical image
analysis [5] and visual tracking [6]. In computer vision
problems, the data often comprise multiple structures
that result in pseudo-outliers (correct measurements of
another structure away from the structure of interest) in
addition to gross-outliers [7] that are produced by errors
in the data generation process.

There are a large number of robust model-fitting
techniques that can be used in recovering the underly-
ing models in the presence of both gross and pseudo-
outliers, and many of these techniques involve opti-
mization of highly complex cost functions. A commonly
used approach is to discretise the parameter space using
sampling and evaluate the cost function on these dis-
crete points to find the optimum (hypothesize and verify
strategy). The assumption here is that at least one of the
hypotheses selected will be sufficiently close to the true
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structure that is to be recovered.
In hypothesize and verify approach, the hypotheses

are generated by sampling subsets of p data points and
estimating the model represented by those data points.
Here p refers to the number of parameters needed to rep-
resent the model and using p as the sample size is known
as minimal subset sampling (MSS) [8]. In the presence of
outliers and multiple structures, the chance of generating
a hypothesis close to a true structure using random
sampling is small. Recently several methods have been
proposed to bias the sampling process towards selecting
points from the same structure in consecutive steps
[9], [10]. Estimating how many samples that need to
be selected in order to guarantee success with a high
probability is not trivial. The main assumption made in
setting the number of samples is that one sample with
only inliers (clean sample) will be adequate to generate
a hypothesis close to the true structure. However, as
shown in Fig. 1, in the presence of noise even a clean
sample may result in a hypothesis that is far from the
true model, particularly if the span of the sample data
points, in one dimension, is not much larger than the
scale of noise [8]. For this reason, most implementations
generate a higher number of samples than necessary,
which in applications involving high-dimensional model
fitting, can make them computationally inefficient. More
importantly, there is usually no measure to indicate the
success, at a given number of samples.

Methods such as LO-RANSAC [11] try to improve the
closeness of an initial hypothesis to the true model by
local search. However, this only works when the initial
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Fig. 1. Minimal subset sampling vs. higher than minimal
subset sampling. The data do not contain outliers [8]. The
figure represents an extreme case where the span of the
data samples is made deliberately small.

guess is in the vicinity of the true structure. Pham et
al. [8] proposed higher than minimal subset sampling
to generate better hypotheses instead of refining the
inaccurate ones. As shown in Fig. 1 using higher than
minimal subset sampling for hypothesis generation has
a greater chance of generating a hypothesis closer to the
true model, given that all the points in the sample are
inliers (this claim will be considered in more detail in the
next section). It is important to note here, that selecting
an all-inlier sample in the presence of multiple structures
and gross outliers, becomes increasingly difficult even
when the sample size is increased by a little (due to
the multiplication of probabilities). This makes direct
extension of MSS sampling methods to higher than
minimal subset sampling computationally inefficient. To
address this, we first investigated (Section 2) the benefit
of increasing the sample size and found that while
increasing the sample size beyond the minimal size (p)
significantly increases the probability of generating a
hypothesis closer to the true model, the significance of
improvements diminishes after p+2. Next, we extend the
minimal subset sampling method of [12] and propose a
computationally efficient model fitting method to find
and verify supported hypothesis in a given data set.

The rest of this paper is organized as follows. Sec-
tion 2 discuss the implications of using higher than
minimal subset sampling and prior work in that direc-
tion. Section 3 describes the proposed method in detail
and Section 4 presents experimental results involving
synthetic and real data, and comparisons with state-of-
the-art model-fitting techniques. Section 6 concludes the
paper.

2 HIGHER THAN MINIMAL SAMPLING

2.1 Previous work

There are two approaches in the literature that use higher
than minimal subsets to solve the model-fitting problem.

The first approach is to use higher than minimal sub-
set samples to generate affinities between those points
and represent them using a hyper-graph, which is then
partitioned to obtain clusters in the data. Agarwal et
al. [13] proposed a two-step algorithm to cluster the

higher order affinities. In the first step, they constructed a
hyper-graph with h = p+1 vertices per edge. This hyper-
graph was then approximated with a pairwise graph
using the clique averaging technique and the resulting
pairwise graph was segmented using a spectral parti-
tioning algorithm. A method that partitioned the hyper-
graph directly without converting it to a pairwise graph
was introduced by Liu et al. [14]. Their approach requires
the hyper-graph and the weights to be calculated at the
start which was very expensive in terms of computations
and memory. Hairong et al. [15] proposed a compu-
tationally efficient hyper-graph clustering method that
used a hypothesize and verify strategy to approximately
construct the hyper-graph, called the random consensus
graph, which is then converted to a pairwise graph
that approximately retains the affinity information. It is
then partitioned using a slightly modified version of the
robust ensemble clustering approach proposed in [14].
Since this algorithm relies on a RANSAC like method
to construct the consensus information, it inherits the
problems that come with RANSAC: such as identifying
structures with multiple noise levels.

The second approach is to use higher than minimal
subset sampling to improve the quality of the hypothesis
in a hypothesize and verify strategy. In LO-RANSAC
method, Chum et al. [11] proposed a local optimization
step that uses higher than minimal subset samples.
However, this step would only work if an initial estimate
in the vicinity of the true solution is provided using MSS.
Pham et al. [8], used higher than minimal subsets ob-
tained using random cluster models (RCM) to generate
hypotheses and used those to initialize a metric labeling
problem that clusters the data points and recovers the
underlying model. However, their method relies on the
spatial contiguity of structures in the dataset, which may
not be true for some model-fitting problems. Due to the
need to generate spatial relationships, this method is also
computationally expensive.

2.2 Evidence to support the use of higher than min-
imal subset sampling

In robust model-fitting techniques that utilize the hy-
pothesize and verify strategy, at least p points need to
be sampled at a time to generate a valid hypothesis. The
number of parameters p constitutes the necessary condi-
tion for the sample size to derive a unique hypothesis.

It is said that increasing the number of points in a
sample beyond p (higher than minimal subset sampling -
HMSS) will increase the quality of the hypothesis (closer
to the true model), given that all the sampled points
are from the structure of interest [8]. This assertion was
examined by using a Monte Carlo simulation of a 2D line
fitting. In this test, n data points representing a line in 2D
space with Gaussian noise of N(0, σ2) were generated
(no outliers) and all the possible tuples (each with h
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Fig. 2. The variation in minimum estimation error with
number of data points n for different sample sizes (h).
The figure shows the mean results of 100 experiments
for each combination.

data points) were used to generate the hypotheses1.
Next, to measure the closeness of a given hypothesis
(hi) to the original line (ht) we used the following
criterion: given that phi and pht are the two points
on each line that is closest to the origin, the distance
between these two lines is calculated as ||phi − pht ||2.
Since this distance measure is proportional to the scale
of noise we normalize by σ to get the final measure
ED(hi, ht) = ||phi − pht ||2/σ. The minimum of these
estimation errors (mini=[1..(nh)]

ED(hi, ht)) indicates the
closeness of the best hypothesis to the true model for
a given number of points (n) and sample size (h). The
average results of 100 such experiments for each n and
h, are shown in Fig. 2.

The results show that the quality of the hypotheses
generated increases with the sample size. However, the
improvement becomes very small after a few additional
points (h = p + 2), particularly for data structures with
a high number of points (n > 20). Importantly, we
observed similar patterns when the dimensionality of the
data is varied.

To analyze the probability of generating a good hy-
pothesis, given that the data are from the inlier set,
we generated n data points from a 2D line model with
noise N(0, σ2). For each dataset, the estimation errors
(ED(hi, ht)) of all possible hypotheses generated with
h points were computed. These estimation error values
(repeated over 100 such experiments) were then used
to draw the cumulative distribution function (CDF) of
estimation errors, shown in Figures 3 (a) and (b). These
results show that the probability of obtaining a good
hypothesis (given that the data are inliers) increases with
the sample size h. Similar to the previous results, the
improvement is only significant up to a few additional
points (h = p+2). The pattern remains similar when the
dimensionality of the model is increased, as shown by

1. For h = p = 2, the hypothesis is generated by finding line
connecting the two points. For h > p, the hypothesis is given by the
least squares method.
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(a) 2D line, n = 20
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(b) 2D line, n = 50
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(c) 3D plane, n = 20
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(d) 3D plane, n = 50

(e)

0 0.2 0.4 0.6 0.8 1

x 10
−3

0

0.2

0.4

0.6

0.8

1

Median residual

C
D
F

 

 

h = 8
h = 9
h = 10
h = 11

(f)

Fig. 3. The cumulative distribution function of estimation
errors for 2D line (a), (b) and 3D plane (c), (d) fitting using
different sample sizes (h). The data used for fundamental
matrix estimation and the CDF of the median residuals
are shown in (e), (f).

an equivalent 3D plane fitting experiment in Figures 3
(c) and (d).

To investigate the behavior on real data, we carried
out a fundamental matrix estimation task. The points
that belong to one group were segmented manually,
as shown in Fig. 3(e) and the fundamental matrix was
estimated using 105 random samples with sample size
h. Since there is no information on the true model, the
estimation error was calculated using median Sampson’s
distance from each hypothesis to the data points. The
CDF of estimation error for different sample sizes is
shown in Fig. 3(f) and similar observations can be made
from these results.

The above results show that “Higher than Minimal
Subset Sampling” increases the likelihood of the close-
ness of the generated hypothesis to the true model.
However, in the presence of outliers, increasing the
number of points in a sample will decrease the probabil-
ity of selecting a clean sample exponentially. Therefore,
identifying how many more points one should include,
beyond the necessary condition, is not straightforward.
The above presented Monte Carlo simulation and exper-
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imental results show that the advantage of increasing the
sample size beyond h = p + 2 would be limited. Even
with the modest increase in sample size (by two), direct
extension of RANSAC-like methods that use random
sampling for higher than minimal subset sampling will
be computationally inefficient due to the decreasing
probability of selecting a clean sample. In addition, these
methods provide no means of knowing that a good
hypothesis has been reached, making it necessary to
generate a predefined number of hypotheses even if a
good hypothesis is obtained early. In the next section, we
propose a new efficient method that carries out higher
than minimal subset sampling.

3 PROPOSED METHOD

In this section we describe the proposed method for
model fitting. The intention here is to cluster data points
([xi]

n
i=1 ∈ R

d) into sub-groups, based on the existence of
underlying models ([θ(j)]nc

j=0). Here n is the number of
data points and nc is the number of structures in the
dataset with j = 0 assigned to outliers.

3.1 Cost function
The first task is to establish a cost function that quantifies
the suitability of a given model to represent a structure
in data. Here we select the Least k-th order statistics
(LkOS) estimator, which is well known for its stability
and high breakdown point [16]. The LkOS cost function
is as follows:

F (θ) = r2ik,θ
(θ) (1)

where r2i (θ) is the i-th squared residual with respect
to model θ and ik,θ is the index of the k-th sorted
square residual with respect to model θ. Here k refers
to the minimum acceptable size of a structure in a given
application and its effect on the methods performance
is discussed in Section 5. It should be noted here that
the value of k is almost always much larger than the
dimensions of the parameter space (k � p).

Optimizing this cost function is highly complex.
Hence, the parameter space is commonly discretized
using randomly generated hypotheses and the cost func-
tion is evaluated at each of these points to find the best
solution (hypothesize and verify). As was previously
discussed, hypotheses generated using minimal subset
sampling may not generate a hypothesis close enough
to the true model. The intention in the proposed method
is to generate more appropriate hypotheses using higher
than minimal subset sampling. However, due to the mul-
tiplication of probabilities, it is not efficient to generate
accurate hypotheses using random sampling of higher
than minimal subsets. To find a way of conducting
HMSS efficiently, we present a greedy algorithm that
starts from a random location on the parameter space
and takes steps proportional to the negative of the local
gradient until either a solution that is with in the basin

of attraction of a local minimum is found or the process
is re-initialized.

The algorithm starts by generating a hypothesis (θ0)
via random sampling of h data points which are then
used to generate the residuals r2(θ0). Next, these resid-
uals are sorted and the h data points around the k-
th sorted residual are used to generate a new set of
parameters as follows:

θl+1 = LeastSquareF it
(
[xim,θl

]km=k−h+1

)
(2)

where θl is the parameters at iteration l and h is the
sample size. This step (equation 2) is then repeated until
the stopping criterion described in the next section is
reached. The intuition behind the above choice and the
behavior are explained in Section 3.3.

Following the analysis in Section 2.2, we have set
h = p+ 2. The above analysis showed that using higher
than minimal samples significantly increases the prob-
ability of arriving at a more representative hypothesis
for the structure when the selected points are all inliers.
To visualize the operation of the above algorithm, the
intermediate steps of the scheme in a simple 2D line
fitting problem are shown in Fig. 4. The figure shows
that the correct structure is recovered by going through
only a few iterations, even when the starting samples are
not members of that structure (outliers).

3.2 Stopping criterion
The next main challenge is to identify a method to stop
the algorithm once it has reached a good estimate that is
likely to be a true structure (having at least k points as
inliers). Once the algorithm arrives at a vicinity of a local
minima representing a structure in data, the first k sorted
points should be from that structure. As the proposed
algorithm picks the points for the next iteration around
the k-th sorted index, they too would be from the same
structure. This leads to a situation where the consecutive
samples are from the same structure. This property is
utilized here to devise a stopping criterion by which we
can detect if the algorithm has found a structure in data.

The stopping criterion is as follows:

Fstop =

⎛
⎜⎜⎝r2ik,θl

(θl) <
1

h

k∑
j=k−h+1

r2ij,θ(l−1)
(θl)︸ ︷︷ ︸

(a)

⎞
⎟⎟⎠∧

⎛
⎜⎜⎝r2ik,θl

(θl) <
1

h

k∑
j=k−h+1

r2ij,θ(l−2)
(θl)︸ ︷︷ ︸

(b)

⎞
⎟⎟⎠

(3)

Here (a) and (b) are the residuals of the sampled points
in iterations l − 1 and l − 2 with respect to the current
parameters θl. This criterion checks the data points as-
sociated with the two previous samples to see if the
average residuals of those points (with respect to the
current parameters) are still lower than the inclusion
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(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

(e) Step 5 (f) Step 6

Fig. 4. The intermediate steps of the proposed method
in a simple 2D line fitting example for h = 4. The model
represented by the current hyper-edge is plotted to make
the steps clear. Note that the vertices of the starting
point (Step 1) are not members of the structure and
the algorithm does not move away from the underlying
structure after it is found (Step 6).

threshold associated with having k points (assuming
that a structure has at least k points implies that data
points with residuals less than r2ik,θl

(θl) are inliers). This
indicates that the samples selected in the last three
iterations are likely to be from the same structure hence
the algorithm has converged.

A challenging problem in multi structural data seg-
mentation is the existence of some local minima due
to accidental alignment of outliers and true structures.
A common solution, also used by competing methods
([17], [15], [8]) is to reinitialize the hypothesis generation
a number of times. Where this number is determined
by the user. To quantify the number of required re-
initializations, in our method this process is carried out
until there is no further improvement in the cost function
in consecutive runs and the algorithm is then stopped
automatically. In our experiments, it was observed that
the number of random initializations required was al-
ways smaller than ten across different types of problems,
which was far less than the number of random samples
needed by the RANSAC-based methods.

For problems with multiple structures, once a reliable

local minimum is returned, the core data points that
correspond with that minimum are segmented out and
the process is repeated until all the structures are recov-
ered. In this implementation, we selected the Modified
Selective Statistical Estimator (MSSE) [18] to segment
points due to its low computational cost, high level
of consistency, and small bias in applications involving
close data structures [19]. This step is aimed at removing
the majority of points associated with already identified
models to prevent the algorithm from returning the
same structure in subsequent iterations. This may be
particularly relevant to problems with one structure with
a significantly lower level of noise compared to other
structures. It should be noted that MSSE does not require
any additional information (such as noise level) for the
segmentation and if such information is available, a sep-
arate segmentation strategy utilizing those information
would result in a better segmentation. The more one
knows a priori, the better the outcome will be.

After all valid hypotheses are found, the final segmen-
tation is carried out by calculating the residuals of all the
points with respect to each model and assigning points
to their closest model. The inliers of each model are then
identified using the MSSE. The complete algorithm of the
proposed higher than minimal subset sampling based
model-fitting method is given in Algorithm 1.

3.3 How does the proposed method find a struc-
ture?

To analyze the local convergence of the proposed
method, we first show that the parameter update of
the proposed HMSS is similar to that of a generalized
Newton method [20].

The cost function for HMSS can be written as:

F̂ (θ) =
m=h−1∑
m=0

r2i(k−m),θ
(4)

where ik,θ is the index of the k-th sorted square residual
with respect to model θ, rim,θ

= θTxim,θ
− yim,θ

and k �
h ≥ p. We show the proposed HMSS steps are similar to
Newton method steps for finding the roots of the cost
function derivatives:

H(θ) =
∂F̂

∂θ
= 0. (5)

In [12], it is shown that although the index i of the k-th
sorted residual cost function in equation (5) depends on
the parameter estimates, there is a finite neighborhood
(DH ) around the estimate in which the sorted indices
next to the kth residual do not change2. Inside this neigh-
borhood, the cost function has a quadratic relationship to
the model parameters. Therefore, the cost function and
its derivatives are continuous and twice differentiable.

2. Only exception is when two residuals are exactly the same, in
which case, the remedy is to merge those as one.
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Algorithm 1 Step-by-step algorithm of proposed higher
than minimal subset sampling based model-fitting meth-
ods
Inputs: Data Points (X ∈ [xi]

N
i=1), minimum cluster size

(k), Number of clusters (nc)
1: lmax ← 50, tmax ← 10, h ← p+ 2
2: l ← 0, t ← 1, j ← 1, [F̂ (j)

min]
nc
j=1 ← ∞

3: repeat
4: repeat
5: Select a random h-tuple from the data points.
6: Generate model θ0 using the h-tuple.
7: repeat
8: [r2(θl), iθl ] =SortedRes(X, θl) .
9: Calculate the cost function F̂ (θl).

10: θl+1 ← LSFit
(
[xim,θl

]km=k−h+1

)
11: Evaluate equation (3)
12: if Fstop then
13: break;
14: end if
15: until (l++ < lmax)

16: if F̂ (θl) < F̂
(j)
min(t− 1) then

17: F̂
(j)
min(t) ← F̂ (θl)

18: θ
(j)
best ← θl

19: end if
20: if F̂

(j)
min(t) = F̂

(j)
min(t− 1) = F̂

(j)
min(t− 2) then

21: break;
22: end if
23: until t++ < tmax

24: [outliers] =GetOutliers(X, θ
(j)
best).

25: X ← X(outliers)
26: until j++ < nc

27: Cluster data using [θ
(j)
best]

nc
n=1.

The generalized Newton method for solving this can be
defined as follows [20]:

θl+1 = θl − V −1
l H(θl) (6)

where Vl ∈ ∂H(θl). For the cost function (5) we can
derive the following:

H(θ) = 2
h−1∑
m=0

xi(k−m),θl
(θTxi(k−m),θl

− yi(k−m),θl
) = 2J�r

(7)

H ′(θ) = 2

h−1∑
m=0

xi(k−m),θl
x�
i(k−m),θl

= 2J�J (8)

where J� = [xik,θl
, · · · , xi(k−h−1),θl

] = X� and r� =

[(θ�l xik,θl
− yik,θl

), · · · , (θ�l xik−h−1,θl
− yi(k−h−1),θl

)]. Equa-
tions (6), (7) and (8) can be simplified into:

θl+1 =
[X�X ]−1 X�Y (9)

which is equal to the proposed HMSS parameter update
in equation (2). Therefore similar to the Newton method,
since the cost function is quadratic the extremum is
found in one step. The above derivation is only valid
for a given order of residuals around the k-th point.

In practice, as shown in Fig. 4, when θl is far from a
true structure (and therefore does not have k support)
the update choses points that does not belong to that
(wrong) hypothesis, hence, θl+1 moves away from θl.
Although this may appear as choosing an arbitrary
hypothesis, the residuals have characteristics that are
exploited by the proposed move. Firstly, it is known
(see [21], [22], [9] for instance) that residuals of data
structures with respect to an arbitrary hypothesis have
a high probability of clustering together in the sorted
residual space. Secondly, we are choosing the next sam-
ple around the k-th residual point. This means those
points are not arbitrary away from the current (wrong)
hypothesis but those must have just missed the threshold
of forming a structure in the data (otherwise this would
have been a correct hypothesis). This makes those likely
to be around the intersection of the current hypothesis
with one of those clusters. When the hypothesis θl is in
the vicinity of a true hypothesis and has k support, the
HMSS step choses the best subset based on the given
order. The algorithm takes these steps repeatedly and as
soon as two sequential subsets remained inliers to the
new hypothesis, it is deemed to have converged to a
solution.

4 EXPERIMENTAL ANALYSIS

We evaluated the proposed method using both synthetic
and real data experiments. The results of the proposed
method were then compared in terms of both accu-
racy and computational time with RCM [8], which uses
higher than minimal subset sampling as well as the
following state-of-the-art model fitting techniques: QP-
MF [17], MultiGS [9], LO-RANSAC [11] and RGC [15].

The code for the proposed algorithm was developed
in MATLAB and the codes provided by the authors were
used to generate the results for competing methods with
parameters either set as instructed by those authors or
tuned to give the best results. It should be noted that the
RCM, MultiGS and LO-RANSAC methods have some
part of their code implemented in C (MEX) and the QP-
MF method uses the MOSEK quadratic solver whereas
the proposed method is implemented in MATLAB by
simple scripts.

The experiments were run on a HP Z400 workstation
with an Intel Xeon W3550 processor. For each instance,
the experiments were repeated 100 times and the aver-
ages of the results are reported.

The accuracy of all methods was evaluated using the
commonly used clustering accuracy measure [17], [15]
given as:

CA =

∑nc

i=0 ntp,i∑nc

i=0 ni
(10)

where ntp,i is the number of true positives in group i
and ni is the total number of points in that group.

The MultiGS and LO-RANSAC are methods that
only cancentrate on hypothesis generation and can be
combined with any clustering method to generate the
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clustering accuracy measure. In this paper, we have
used consensus information (similar to RANSAC) as the
clustering method for those techniques, noting that it
requires scale of noise as an input. This parameter was
manually set to the true inlier noise in our synthetic data
experiments. Hence, the clustering accuracy for those
methods reflects the best possible value and in practice,
lower accuracies can be expected.

Since the MultiGS and LO-RANSAC methods do not
have any explicit stopping criteria, in our experiments,
the sampling times of these methods are limited to the
average run time required by the proposed method in
each problem.

4.1 2D line fitting

First, we evaluated our algorithm in detecting lines in
a 2D point set contaminated with both noise and gross
outliers using the standard regression model. The data
points were generated by combining four intersecting
lines, with each line containing ni points with Gaus-
sian noise N(0, σ2

i ). Furthermore, uniformly distributed
n0 = 100 gross outliers were added. An example of a
point set ([ni]

4
i=0 = 100, σ = 0.025) is shown in Fig. 5(a).

The structures returned by the proposed method are also
shown.

We examined the performance of the algorithm for
varying levels of inlier noise in the interval σi ∈
[0.001, 0.05]. The number of data points was fixed at
[ni]

4
i=0 = 100. The clustering accuracies are shown in

Fig. 5(b) together with those of competing methods.
The results show that the proposed method pro-

duces the best accuracy, specially for higher noise levels,
closely followed by MultiGS and LO-RANSAC. It should
be noted here that the threshold value for clustering in
MultiGS and LO-RANSAC was manually set to the true
value, giving these methods an unrealistic advantage
over the proposed method which uses MSSE for clus-
tering (automatically estimating the scale of noise). The
model complexity penalty (β) is an external parameter
that is needed by the RCM method and during our
experiments we found that in order to recover the correct
model, this parameter needs to be manually tuned for
each noise level. Fig. 5(e) shows the variation of the
clustering accuracy with β for each noise level. The RCM
clustering accuracy in Fig. 5(b) is the best achieved for
a given noise level across all tested parameter values.
None of the other methods required parameter tuning
for each step.

Fig. 5(c) shows the total computation time for each
method. The results show that the proposed method is
the fastest of the tested methods and is more than an
order of magnitude faster than RCM.

Next, the number of total data points was varied in the
range 250-2500 while the noise was fixed at σi = 0.01.
The total computation times are shown in Fig. 5(d).
The results show that the proposed method is very
efficient in terms of computation time with a slight linear

increase in time with the number of points. As expected
clustering accuracy remained constant.

Through these experiments the parameter k for the
proposed method was fixed at k = 0.1 ∗ N , where N
is the total number of points. During the experiments
we have observed that the model fitting accuracy will
not change significantly with k so long as there are no
structures with less than k points.

4.2 3D plane fitting
In the second set of experiments we detected planes
in a 3D point set contaminated with both noise and
gross outliers using standard regression model. The data
points were generated by combining four planes, with
each plane containing ni points with Gaussian noise
N(0, σi). Furthermore, uniformly distributed n0 gross
outliers were also added. An example of a points set
([ni]

4
i=0 = 100, σ = 0.5) is shown in Fig. 6(a) with the

clusters returned by the proposed method.
We assessed the performance of the proposed algo-

rithm for varying levels of inlier noise in the interval
σi ∈ [0.1, 5.0]. The number of data points was fixed
at [ni]

4
i=0 = 100. The clustering accuracy and the total

computation time of the proposed method are shown in
Figures 6(b) and 6(c) respectively, together with those
of the competing methods. The proposed method again
produced the best clustering accuracy with the lowest
computation time, and the improvement over MultiGS
and LO-RANSAC is much larger than that of the 2D line
fitting case.

As shown in Fig. 6(e), the clustering accuracy for
MultiGS and LO-RANSAC does not exceed that of the
proposed method (for high noise values) even when the
sampling times for those methods are increased to 10 to
25 times that of the proposed method.

In the next experiment, the number of total data points
was varied in the range 250-2500 while the noise level
was fixed at σi = 0.2. The results shown in Fig. 6(d), in-
dicate that the proposed method is very efficient in terms
of computation time with slight linear increase in time
with number of points, whereas the computation time
of MultiGS increased exponentially with the size of the
data. Fig. 6(f) shows the variation of Clustering Accuracy
with the scale of noise for the proposed algorithm with
h set to p and p + 2. This shows that using higher than
minimal subsets improve the results significantly over
those using minimal subsets.

4.3 Two-view motion segmentation
Two-view motion segmentation is the task of identifying
the points corresponding to each object in two views of
a dynamic scene that contains multiple independently
moving objects. Provided that the point matches be-
tween the two views are given as , each motion can be
modeled using the fundamental matrix F ∈ R

3×3 as [23]:

X�
1 FX2 = 0 (11)
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Fig. 5. (a) Example dataset used in the line fitting experiments together with the structures returned by the proposed
method. (b) Variation of the clustering accuracy with the scale of noise for different algorithms. (c-d) Variation of the
computation time with the scale of noise and the total number of points for different algorithms. (e) The effect of
parameter β of RCM on clustering accuracy for data with varying scale of noise.
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Fig. 6. (a) Example dataset used in the plane fitting experiments together with the structures returned by the proposed
method. (b) Variation of the clustering accuracy with the scale of noise for different algorithms. (c-d) Variation of the
computation time with the scale of noise and the total number of points for different algorithms. (e) The clustering
accuracy variation for MultiGS and LO-RANSAC when the sampling times for those methods are increased to 10
and 25 times that of the proposed method. (f) The Clustering Accuracy variation with scale of noise for the proposed
algorithm with h set to p and p+ 2.
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The distance from a given model to a point pair can be
measured using the Sampson distance [24].

First, we used the “box-book-mag” image pair from
[25] to evaluate the performance of the proposed and
competing methods. The “box-book-mag” has two im-
ages of three independently moving objects together
with feature correspondences. The performance of each
algorithm was evaluated using clustering accuracy and
computation time.

The clustering accuracy of the proposed method was
observed while limiting the number of allowed ran-
dom initializations to a specific value. The results are
presented in Fig. 7(a), and show the proposed method
achieves high accuracy without the need for many ran-
dom re-initializations. Then, we set the sampling times
of the MultiGS and LO-RANSAC to the time taken
by the proposed method at each step and recorded
their accuracy. The results, plotted on the same figure,
show that these algorithms take longer to achieve the
same level of accuracy as the proposed method. For
comparison, we also included the results given by RCM.
The results show that the proposed method is fast and
can achieve better accuracy. Figures 7(b) and 7(c) show
the inlier and outlier points identified by the proposed
method, respectively.

The clustering results of the proposed method for
the remaining sequences in dataset [25] is shown in
Fig. 8. The results show that the proposed method has
successfully identified the structures present in data with
multiple structures and gross outliers.

4.4 Multi-homography detection

Assume that the point matches between two views of
a static scene with multiple planar surfaces are given
as [X1, X2] . Multi-homography detection aims to detect
point matches arising from the same planar surface
using a homography matrix H ∈ R

3×3 that relates the
matching points via X1 ∼ HX2. The distance from a
data point to a given model can be measured using the
Sampson’s distance.

Similar to [8] we test the performance of the proposed
method on the AdeladeRMF dataset [26]. The clustering
accuracy of the proposed method together with RCM
and multiGS is given in Table 1. Here, the sampling
time of MultiGS method was set to ten times that of
the proposed method.

The results show that the proposed method achieved
high accuracy in a very short time compared to other
methods. It should be noted here that the proposed
method was not able to detect the two smallest (in
terms of number of points) structures in Johnsonb dataset.
This is due to the small number of points in each of
those structures, which was 20 and 15 respectively. RCM
was also not able to detect these structures reliably. The
analysis of [19] showed that if the scale of inlier noise is
not known a priori, its estimation requires more than 20
data points to limit the effects of the finite sample bias.

TABLE 1
Multi-homography detection results. The time is given in

milliseconds.

RCM MultiGS Proposed
Method

CA Time CA Time CA Time
Johnsona 0.91 1300 0.69 5023 0.94 473
Johnsonb 0.89 2150 0.73 6958 0.85 663
Ladysymon 0.91 1010 0.89 2371 0.94 219
Neem 0.92 1020 0.74 3565 0.93 327
Oldclassicswing 0.98 950 0.92 2699 0.97 252
Sene 0.98 1220 0.99 2590 0.98 237

To provide a qualitative measure of the performance
of those methods, clustering results of the proposed
method and RCM are compared with the ground truth
in Fig. 9. The first column shows that both methods
were able to achieve good results on Unionhouse having
five structures. However, the proposed method was able
to detect all six structures in the BonHall image (some
incorrect classification of outliers as inliers can be seen)
whereas RCM was not able to detect one of those
structures. Due to the use of spatial consistency, RCM
results are affected if the same structure is separated by
either outliers or another structure as seen in images of
ElderHall, BarSmith and Napiera buildings. The proposed
method does not assume the existence of spatial conti-
guity and was therefore able to achieve good clustering
in those cases.

In these experiments, the parameter k of the proposed
method was set to a value between 20 to 40 based on
the number of points in each dataset.

4.5 3D-motion segmentation of rigid bodies

The objective of 3D motion segmentation is to identify
multiple moving objects using point trajectories through
a video sequence. If the projections (to the image plane)
of N points tracked through F frames are available,
[xfα]

f=1...F
α=1...N ∈ R

2 then [27] has shown that the point
trajectories Pα = [x1α, y1α, x2α, . . . xFα, yFα]

� ∈ R
2F that

belong to a single rigid moving object are contained
within a subspace of rank � 4, under the affine camera
projection model. Hence, the problem of 3D motion
segmentation can be reduced to a subspace clustering
problem.

We utilized the commonly used “checkerboard” image
sequence in the Hopkins 155 dataset [28] to evaluate our
algorithm. This dataset contains trajectory information of
104 video sequences that are categorized into two main
groups depending on the number of motions in each
sequence (two or three motions).

One of the characteristics in subspace segmentation is
that the dimension of the subspaces may vary between
two and four, depending on the nature of the motions.
The proposed method, which was not specifically devel-
oped to solve this problem (similar to most competing
techniques) is not capable of identifying the number of
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Fig. 8. Two-view motion segmentation results for image sequences in dataset [25]. Line 1 shows the ground truth
whereas lines 2 and 3 show the final HMSS samples selected and the clustering results of the proposed method. The
outliers are marked in red.

dimensions of a given motion and requires this infor-
mation as an input. In our implementation we have
taken two approaches. In the first approach (PM T1), we
set the dimensions of the subspaces to four and in the
second we set the dimensions to three or four based on
the average ground truth knowledge (not set for each
sequence but to the whole sequence i.e. the subspace
dimensions for all checkerboard three object sequences
were set to [3, 4, 4]). The second approach (PM T2) is
intended to demonstrate the accuracy of the method in
cases where an estimate of the subspace dimensions is

available.
We compared our results with energy minimization

and QP-MF3. For completeness we also included the re-
sults of the sparse subspace clustering (SSC) [1] method
which does not rely on dimensionality information. The
results are shown in Table 2. The proposed method with
fixed subspace dimensions (dim = 4) achieved better
results than the competing model-fitting techniques (QP-
MF, RANSAC, Energy minimization) but these results
are not as good as SSC. However, when some informa-

3. The results published in [17] are used in this comparison.
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Fig. 9. Qualitative results of multi-homography estimation. line 1 is the ground truth where as lines 2 and 3 are
segmentation results of the proposed method and RCM respectively. The outliers are marked in red.

tion about the dimensionality of the subspaces was pro-
vided to the algorithm, our proposed algorithm achieved
results comparable with the SSC.

To provide a qualitative measure of the performance
the final segmentation results of several sequences in the
Hopkins 155 dataset, where the proposed method was
successful, are shown in Fig. 10. These results show that
the proposed method has been successful in a range of
problems with different types of motion. We have also
included some cases where the proposed method was
not successful (Fig. 11). Figures 11(a) and 11(b) show
instances where a single motion has been segmented
into two. This is because some motions are segmented in
to multiple degenerate motions. Figures 11(c) and 11(d)
show instances where a structure has very low number
of points relative to the other structures and in these
cases the proposed method would be expected to fail due
to the finite sample bias in the inlier noise estimation.

5 DISCUSSION

This paper presents an accurate and efficient method
that can be used to detect underlying structures in data
contaminated with noise and outliers. The proposed
method is very general and requires only a very few
input parameters compared to the competing methods.

One of the parameters required by the proposed
method is the value of k, which defines the minimal
acceptable size for a structure in a given application.
Any robust model fitting method needs to establish the
minimal acceptable structure size (either explicitly or
implicitly), or else it may result in a trivial solution.
For example if we are given a set of 2D points and

asked to identify the lines in data without any additional
constraint, there would be no basis to exclude the trivial
solution because any two points will result in a perfect
line. Hence in order to find a meaningful solution there
must be some additional constraints such as the mini-
mal acceptable size for a structure. Knowing the scale
of noise is essential for accurate segmentation. While
most competing methods require this as an input, the
proposed method estimates the noise scale from data.
The analysis of [19] showed that the estimation of the
noise scale from data requires more than 20 data points
to limit the effects of finite sample bias. As such, the
proposed method is not suitable for finding structures
with only a small number of data points (< 20).

The proposed method also assumes that the number of
structures is known a prior. This is one of the weakness
in the proposed method, however the problem of iden-
tifying the number of structures present and the scale
of noise simultaneously is still a highly researched area
with no good solutions. Remaining outliers can always
be seen as members of a model with large noise values.
Some model fitting methods that are based on energy
minimization [29], [8] are devised to estimate the number
of structures given the scale of noise. They achieve
this by adding a model complexity term to the cost
function that penalize additional structures in a given
solution. However, these methods require an additional
parameter that balances the data fidelity cost with the
model complexity (number of structures in RCM). Our
experiments on RCM showed that the output of these
methods were heavily dependent on this parameter and
required hand tunning to generate reliable results (see
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TABLE 2
Percentage clustering Error of 3D motion segmentation.

Reference RANSAC Enargy QP-MF SSC PM T1 PM T2

2 Objects
Mean 2.76 6.52 5.28 9.98 2.23 3.98 3.88

Median 0.49 1.75 1.83 1.38 0.00 0.00 0.00
3 Objects

Mean 6.28 25.78 21.38 15.61 5.77 11.06 6.81
Median 5.06 26.01 21.14 8.82 0.95 1.20 1.04

(a) 1R2RC (b) 2R3RTCRT (c) cars10 (d) three-cars

Fig. 10. Segmentation result for several sequence in the Hopkins 155 dataset where the proposed method was
successful. The sample used to generate the best hypothesis is also shown.

Single Structure
Segmented to two

(a) 1R2RCT-A

Single Structure
Segmented to two

(b) 2RT3RCR

Merged in to
one structure

(c) cars2-06

Incorrectly included
some points from
another structure

Correctly
Identified

(d) cars2-07

Fig. 11. Segmentation result for several sequences in the Hopkins 155 dataset where the proposed method was not
successful. The sample used to generate the best hypothesis is also shown.

Fig. 5). The RCG method which is a hyper-graph-based
method does not take the number of structures directly
as an input. However, it may also result in multiple
models representing the same structure and in order to
remove these repetitions that method uses an additional
pruning step that requires the knowledge of separation
between the structures (another parameter).

The MSSE algorithm which is used to estimate the
scale of noise, requires the constant threshold T as an
input. T defines the inclusion percentage of inliers based
on a normal distribution for noise which is a number
around 2.5, i.e. T = 2.5 will include 99% of inliers.

The proposed method does not employ any addi-
tional information, such as the spatial contiguity, in the
clustering. While this is advantageous in cases where
the spatial contiguity is violated (see Fig. 9), in some
problems where a structure has spatial contiguity, not
using such priors will result in slight degradation in the
clustering. This problem is elaborated in Fig. 12. The
clean samples in the figure shows that the proposed

algorithm has identified the underlying model correctly.
However some points within one structure is clustered
into another as these points are closer to that model. This
problem can be eliminated by coupling the segmenta-
tion step with partial contiguity prior where applicable.
However, we have not implemented such scheme in this
paper as the main aim is to detect the a underlying
models.

6 CONCLUSION

In this paper we first studied the usefulness of using
higher than minimal subsets for hypothesis generation in
parametric model fitting. The synthetic data experiments
showed that using higher than minimal subset samples
for hypothesis generation increases the probability of
generating a good hypothesis close to the true model,
given that it is a clean sample. The experiments also
showed that the probability increase is only significant
up to few additional data points. However, the probabil-
ity of selecting a clean sample decreases with the increase
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Fig. 12. Two-view motion segmentation results for image sequences “poster-checkerboard” (line 1) and “poster-
keyboard” (line 2) from [2].

of the sample size, making it improbable to extend
the commonly used sampling methods to accommodate
higher than minimal samples.

This paper presents a new approach to parametric
model fitting that uses higher than minimal subset sam-
pling to generate hypotheses.

The performance of the algorithm in terms of accuracy
and computational efficiency was evaluated on several
models-fitting problemsand were compared with state-
of-the-art model fitting techniques. The comparisons
showed that the proposed method is both highly accu-
rate and computationally efficient.
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Jiménez, “Tracking people in video sequences using multiple
models,” Multimedia Tools and Applications, vol. 49, no. 2, pp. 371–
403, 2010.

[7] C. V. Stewart, “Bias in robust estimation caused by discontinuities
and multiple structures,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 19, no. 8, pp. 818–833, 1997.

[8] T. T. Pham, T.-J. Chin, J. Yu, and D. Suter, “The random cluster
model for robust geometric fitting,” in 2012 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE, 2012, pp.
710–717.

[9] T.-J. Chin, J. Yu, and D. Suter, “Accelerated hypothesis generation
for multi-structure robust fitting,” in Computer Vision - ECCV 2010,
ser. Lecture Notes in Computer Science, K. Daniilidis, P. Maragos,
and N. Paragios, Eds. Springer Berlin Heidelberg, 2010, vol. 6315,
pp. 533–546.
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