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Abstract—Non-rigid image registration techniques using in-
tensity based similarity measures are widely used in medical
imaging applications. Due to high computational complexities
of these techniques, particularly for volumetric images, finding
appropriate registration methods to both reduce the computation
burden and increase the registration accuracy has become an
intensive area of research. In this paper we propose a fast
and accurate non-rigid registration method for intra-modality
volumetric images. Our approach exploits the information pro-
vided by an order statistics based segmentation method, to find
the important regions for registration and use an appropriate
sampling scheme to target those areas and reduce the registration
computation time. A unique advantage of the proposed method
is its ability to identify the point of diminishing returns and stop
the registration process. Our experiments on registration of end-
inhale to end-exhale lung CT scan pairs, with expert annotated
landmarks, show that the new method is both faster and more
accurate than the state of the art sampling based techniques,
particularly for registration of images with large deformations.

Index Terms—Biomedical Imaging, Non-rigid Registration,
Robust Statistics, Sampling, Ranked Order Statistics

I. INTRODUCTION

NON-RIGID image registration is the task of finding
a transformation that spatially aligns two images with

globally non-uniform differences. The Non-rigid registration
problem has received substantial attention in previous years
and several methods to solve this problem have been proposed.
The non-rigid registration methods are broadly classified into
two categories based on their transformation models [1]: Phys-
ical models and basis function expansions. Physical models
are based on physical phenomena such as viscous fluids or
elasticity and are described using partial differential equations
[2], [3]. Basis function expansions use parametric models such
as B-splines [4], radial basis functions [5] and wavelets [6]
to represent the transformation [1]. Among all these models
the B-Spline transformation model is commonly used for
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non-rigid registration largely due to its lower computational
complexity compared to physical models. A survey of the
existing methods of non-rigid registration has been provided
in [1], [7]–[9].

Although the implementation of non-rigid intensity based
registration is varied in practice, the intensity based registration
framework can generally be segregated into three modules
[10]: Transformation space, similarity measure and optimiza-
tion algorithm, for finding a parametrized transformation by
minimizing an intensity based cost function. This is essentially
a nonlinear optimization problem: Given the intensity values
of two images, namely fixed (If (x)) and moving (Im(x))
images, the transform parameters vector θ is found by solving
the following minimization problem [11]:

θ̂ = argmin
θ

[Ψ(θ)] (1)

where Ψ is the cost function (or dissimilarity measure) and θ̂
is the optimized vector of the transformation parameters.

To determine the optimal set of parameters that satisfies the
above equation, gradient based iterative optimization strategies
are commonly used [11]. However, for non-rigid registration
of medical images with large number of voxels and transfor-
mation parameters, calculation of the cost function gradient
(∇θΨ(θ)) takes a significant amount of time [12]. There are
two commonly used techniques to reduce the computational
complexity of this task. The first technique, based on the
stochastic sub-sampling method introduced by Robbins and
Monro [13], uses only a subset of voxels to estimate the model
parameters [12], [14] while the second technique reduces the
number of registration parameters by carrying out registration
only on selected regions of the image [15] which affect the
registration outcome most.

In this paper we propose a fast and accurate non-rigid regis-
tration method for images of the same modality that combines
the properties of the above two techniques using a robust
statistical approach. Our approach exploits the information
available in the difference image, by using an order statistics
based segmentation method [16], to find the important regions
for registration and use an intricate sampling scheme to target
those areas and reduce the registration computation time. Our
comparative experiments on registration of end-inhale end-
exhale lung CT scan pairs, with expert annotated landmarks,
show that the new method is faster and more accurate than
the state of the art sampling based techniques [12], [15],
particularly for registration of images with large deformations.

The outline of the idea of using the information available
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in difference images to speed up registration was presented
in [17]. The current paper builds upon our earlier work by
presenting an extensive set of comparative experimental results
and a detailed discussion of the merits of the proposed algo-
rithms. The rest of this paper is organized as follows. Section
II provides a brief description of previous research in this area.
Section III explains the proposed registration scheme. The
experimental set up and the comparative registration results
of the proposed methods are presented in section IV. The
performance of the proposed methods in comparison with the
best available techniques and the advantages and drawbacks
of those techniques are discussed in Section V. Section VI
concludes the paper.

II. PREVIOUS RESEARCH

There are two commonly used techniques to reduce the
computational cost of parametric non-rigid image registration.
Rohde et al. [15] first introduced the idea of carrying out
the registration only on the regions that are not so well
registered. Their method, called Adaptive Registration (AR),
uses a hierarchical framework, where at each level a set of
radial basis functions are placed on an irregular grid. The
nodes of the irregular grid are the centers of the misregistered
regions in the image at a particular level. Using such an
irregular grid reduced the number of parameters compared
to a fixed grid registration method leading to a reduction in
the computational cost. In order to identify the misregistered
regions, the AR method uses an additional step in which
another set of basis functions are placed on a fixed grid and
the gradient magnitudes of the cost function with respect to
the parameters of the fixed grid are evaluated. The locations
of the remaining grid points after eliminating the ones with
low gradients are then considered as centers of the regions of
misregistration (nodes of the irregular grid at that level).

A careful analysis of the above method reveals that it is
necessary to recalculate the cost function derivatives, involving
all the voxels, at the beginning of each registration step to
determine misregistered regions. This calculation is computa-
tionally expensive hence the overall registration process takes
a relatively long time to complete. Our inspiration for the
proposed method stems from the fact that the registration time
will be significantly reduced if the misregistered regions are
identified more efficiently.

The second technique to reduce computational time is to
use only a subset of voxels to estimate the parameters on
a fixed grid. Klein et al. [14] were the first to advocate
the use of uniform sampling for non-rigid medical image
registration. The uniform sampling gives equal significance
to all the voxels in an image and since the true function in
this case is not distributed uniformly, using only a subset of
voxels produces a biased estimate of the gradients. To reduce
the sampling bias they proposed to renew the set of chosen
samples at every iteration of the optimization routine giving
equal significance to all the voxels. To improve the registration
accuracy Bhagalia et al. [12] introduced the idea of using
the importance sampling (IS) technique to select a subset
of voxels. Importance sampling is a way of obtaining the

properties of the desired distribution using another but related
distribution. In their method, they used the properties of the
edge magnitude to approximate the probability distribution of
the gradients.

In this paper we propose a new method that combines
the benefits of both techniques mentioned above. Although
our method focuses on misregistered parts in the image, the
method used for finding them is completely different to that
of the method used by AR. Here, we move away from trying
to define the misregistered regions based on cost function
gradients and directly use the information carried by the
misregistered points to improve the optimization outcome.

We propose a new approach for the identification of mis-
registered points in which the square intensity differences of
fixed and transformed moving image voxels guide the iden-
tification process using a rank ordered statistics based robust
segmentation technique. In addition to improving the accu-
racy of registration our method provides a computationally
efficient means of stopping the registration process once the
improvements become small. In practice it is very important
to know precisely when to end the registration process [10].
Our proposed method is described in the following section.

III. THE PROPOSED METHOD

A. How to Sample Efficiently?

The main idea of our proposed method is to turn the
registration focus to the regions of the image which is not
so well registered. The challenge is to efficiently identify
the regions of misregistration at each step of the registration
process. Our contribution here is to devise an efficient method
that exploits the information available in the difference image
(the image intensity difference between the fixed image and
the transformed moving image) to identify the regions of
misregistration. We note that the sum of square difference
(SSD) cost function is not significantly influenced by the small
intensity differences. A very small difference between two
corresponding voxels means that the voxels are either almost
registered or they are both in a low textured region. As such,
the significance of those voxels to the registration process is
minimal (those voxels are referred to as group one voxels).
On the other hand very high variations are often caused by
occasional differences such as misregistered vessels, organ
boundaries or gross measurement errors (outliers). Although
those are almost always present in every image and could
be relevant for registration, their inclusion has the potential
to skew the optimization and bias the final results (those
are referred to as group three voxels). To visualize how the
intensity differences are distributed for a given image, the
joint histogram between the fixed image and the transformed
moving image during a registration process is shown in Fig.
1. The joint histogram shows that a large number of voxels
are clustered around the center line. These are the voxels that
correspond to an almost registered group of voxels (group
one).

The challenge is to find computationally efficient ways of
excluding the group one and three voxels and use only the
voxels in the middle group (group two) for registration at every
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Fig. 1. The joint histogram of the fixed image (If (x)) and the transformed
moving image (Im(T (x))) for case 5 of DIR-dataset at the 10th iteration.

step. This is, to an extent, similar to the multi-structural data
segmentation and many different methods to dichotomize data
based on the distribution of residuals have been developed. The
emphasis of these methods is to group data points that are most
similar and the analysis presented in [18] showed that most
of these methods have similar performances.Following recom-
mendations of [18], we used the Modified Selective Statistical
Estimator (MSSE) [16] to segment voxels. The implementation
of MSSE is very straightforward (computationally efficient),
the estimator has nice asymptotic properties [19] and the
value of its required parameter (i.e. the minimum size of an
acceptable group) is known in this case. Having said this, we
expect the use of other similar robust estimators to produce
comparable results.

In our implementation of MSSE, the members of the first
group are found by using the following criterion starting from
the median of absolute residuals [16]:

|ri+1| < Tσi (2)

here i is the index after sorting, |ri+1| is the absolute image
intensity difference (residual) at index i + 1, T is a constant
threshold (2.5 is used to include 99% of inliers based on a
normal distribution [16]) and σ(i) is the standard deviation of
sorted residuals up to index i. Fig. 2 shows the classification
of different voxels based on their absolute residuals using the
MSSE constraint (2).

As we mentioned earlier, the voxels with very large dif-
ferences have the potential to bias the registration process.
As such, the last five percent of the largest residuals are
also discarded from the group identified as outliers by the
MSSE. Once the voxels that belong to the second group
are identified, we modified the sum of squared differences
(SSD) cost function to include only voxels that belong to
this group at every iteration. Since the group memberships are
decided at every iteration, voxels with large differences that
have the potential to improve their registration will eventually
be included in the second group. The proposed cost function
is written as:

Ψ(θ) =
1

(i2 − i1)

i2∑
n=i1

r2θ(xi) (3)

where i1 and i2 are the first and last sorted indices of the
squared residuals that belong to the middle group and r2θ(xi) =
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Fig. 2. Classification of different voxels based on their absolute residuals
using the MSSE constraint. The arrows show the boundaries between groups
in a sample data set.

(If (xi)−Im(Tθ(xi)))
2. Tθ(xi) is the B-Spline transformation

with parameter θ.
Having defined the cost function, the next step is to estimate

the gradient of the cost function. The estimation of the gradient
using all the chosen points would still be computationally
expensive. Adopting sampling based stochastic optimization
techniques [13] enables us to perform the registration us-
ing a computationally cheaper estimate of the cost function
gradients. To estimate the gradients using this approach we
can either use random sampling or importance sampling tech-
niques [12].We have developed registration algorithms using
both techniques and those are named robust random sampling
(RRS) and Robust importance Sampling (RIS), respectively. In
the importance sampling algorithm [12], the gradient magni-
tudes of both the fixed (|∇If (x)|) and the transformed moving
(
∣∣∇Iθm(x)

∣∣) images are first used to compute the following
probability distribution function (PDF):

P θ
s (i) =

eθi∑n
j=1 e

θ
i

; i = 1....n (4)

where eθi =
|∇If (i)|∑N

j=1 |∇If (j)|
+

|∇Iθ
m(i)|∑N

j=1 |∇Iθ
m(j)|

. The inverse cumulative distribution function (CDF) sam-
pling [20] is then used to choose the appropriate voxels for
gradient estimation. To explain how the above method works,
we first note that when a random variable X has a cumulative
distribution function F , then the values of F (X) is uniformly
distributed in the range [0, 1]. As such, a set of uniformly
distributed samples of the calculated probabilities can be used
to generate samples of the fixed image that has the desired
distribution P .

B. Convergence Criterion

Another important challenge in successful implementation
of stochastic optimization schemes is to find an appropriate
stopping criterion. Simple criterion used for gradient descent
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Algorithm 1 Step-by-Step Algorithm of Proposed Methods
Inputs: Fixed Image, Moving Image, transform Parameters

1: Apply the transform to the moving image and recalculate
the intensity values at grid points (Transformed Image).

2: Calculate the absolute differences between the fixed and
the transformed images (|r|).

3: Sort the |r| values and keep their orders (ascending).
4: Find K, K is the first index of the sorted residuals where

|ri+1| < Tσi is not satisfied .
5: Find KL = 0.95 × Total Number of Voxels.
6: if Sampling Scheme = RRS then
7: Randomly Select N voxels starting from the Kth po-

sition in the sorted array up to the Kth
L position as the

samples .
8: else if Sampling Scheme = RIS then
9: Select N voxels starting from the Kth position in

the sorted array up to the Kth
L position using inverse

CDF (CDF of the edge magnitudes of the fixed and
transformed moving images) sampling, as the samples.

10: end if
11: if (Ck ≤ THRESHOLD) then Stop Optimization

algorithms such as the magnitude of the gradient or the change
in cost function are inappropriate for stochastic optimization
as the gradient approximate is noisy and may not vanish
near the optimal solution. To overcome this limitation most
practical algorithms simply use a fixed number of iterations
[11], [12], [15]. In practice this is not an appropriate solution
and the required number of iterations is not known a priori.
Fixed number of iterations for all cases would either lead to
inadequate accuracy or waste of computation resources.

An important advantage of the proposed algorithm is that
the degree of convergence of the registration can be directly
measured by looking at the number of voxels identified by the
MSSE as inliers (the voxels that are almost registered). As
such, the increase of voxels in this group at every iteration
is proportional to the increase in the registration accuracy. To
take advantage of this characteristic we devised a stopping
criterion by developing a normalized measure of this attribute.
The measure defined is as follows:

Ck =
Nk −Nk−1

Nk−1
× 100% (5)

where Nk denotes the number of voxels in the inlier group
at iteration k. The registration is then deemed successful
once Ck is less than a specific threshold (0.1% in all of our
experiments).

An added advantage of this approach is that the com-
putational cost associated with calculating this criterion is
negligible. A complete description of the proposed registration
algorithms is provided in Algorithm 1.

IV. ANALYSIS OF THE PROPOSED ALGORITHMS

A. Experimental Setup

To compare the performance of the proposed registration
methods with the best available techniques, an extensive

set of experiments using lung CT images were conducted.
The elastix registration toolbox [14] based on the Insight
Segmentation and Registration Toolkit (ITK) was used as the
basis of the registration framework that was developed to
implement both the Importance Sampling and the proposed
Robust Sampling methods. The code provided by the first
author of [15] was used to obtain the results for the AR
method. All experiments were conducted using the HP Z400
workstation with single Intel Xeon W3550 3.06GHz processor.

Two CT datasets were used to estimate the registration
accuracy of the two proposed methods and to compare those
with the state of the art methods. The first was the CT dataset
used by Bhagalia et. al. [12] (referred to as IS-dataset). This
dataset consists of 8 pairs (breath-hold) of maximum inhale
to maximum exhale CT images with 1.87× 1.87× 5.0 mm3

voxels [21]. The second data set, referred to as DIR-dataset,
was provided by the University of Texas MD Anderson Cancer
Center [22]. This dataset consists of 4D-CT images of ten
different patients each consisting of a sequence of images
taken through a full respiratory cycle. In our experiments we
registered the maximum inhale and maximum exhale images
in each case. Every case of the 4D-CT dataset has 300 expert
identified landmarks and their associations at full inhale and
exhale images. In our experiments all images were cropped
and segmented to include only the lungs. The segmentation
was done automatically using ITK-SNAP [23] software.

B. Implementation

The first step in our registration framework is to implement
an appropriate hierarchical scheme to ensure that the regis-
tration process is not trapped in a local minimum. To make
our results comparable with the ones published in [12], we
also implemented a two level Gaussian pyramid scheme [8].
In this scheme, the amount of data in the initial level of the
registration process is down-sampled by a factor of two and
smoothed using a Gaussian kernel N (0, 1) while in the second
level, the original image is used.

For the transformation model the cubic B-Spline described
by the following equation [24] was used:

Tθ(x) = x+
∑

xk∈Nx

θkβ
3(
x− xk

s
) (6)

where θk is the kth parameter, β3(x) is the 3rd order B-Spline
polynomial given by [25]:

β3(x) =


2
3 − |x|2 + |x|3

3 0 ≤ |x| ≤ 1
(2−|x|)3

6 1 ≤ |x| ≤ 2
0 2 ≤ |x|

(7)

and Nx is the set of all control points (xk) within the compact
support of the B-Spline at point x. The control points for each
level were organized in a fixed grid with voxel spacing of
16×16×8 for the first level and 8×8×4 for the second level.
In order to optimize the cost function the stochastic gradient
descent described by the following equation was used:

θk+1 = θk + akĝ(θk) (8)
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where ak is a vector that controls the step size in different
directions at every iteration of the algorithm and ĝ(θk) is
an appropriate estimate of the gradient. For the stochastic
optimization solution to converge, the step size ak should
satisfy the following conditions: ak ≥ 0 ; ak → 0 as k → ∞
;
∑∞

k=0 ak = ∞ ;
∑∞

k=0 a
2
k < ∞ . A common way to ensure

that the step size satisfies the above criterion is to use the
following step size formula [26]:

ak =
a0

(A+ k)α
(9)

where k is the iteration number and a0 and A are em-
pirically determined constants. However, for problems with
large number of parameters, the optimal step size for every
parameter may vary widely and therefore a specific step size
for each parameter needs to be calculated. In this case, to
ensure convergence, the following equation is commonly used
to calculate the step size for each parameter [27]:

aik =
a0

(A+Qi
k)

(10)

where Qi
k is the number of sign changes in the ith parameter

up to the kth iteration.
Another commonly used method to ensure convergence

in stochastic approximations is to increase the sample size
progressively during the iterations [28]. In our work we have
adopted a combination of these two methods as advocated
by [12]. Using the combination scheme not only ensures the
convergence of our proposed methods but also makes the
final results directly comparable with [12]. There are four key
parameters to be selected in this optimization scheme: number
of iterations, A, a0 and number of samples in each iteration.

All competing registration methods, in contrast to those
proposed here, need a predefined measure to stop the reg-
istration process. For these methods the maximum number
of iterations at each level of hierarchy was set to 60 and
100, respectively. These represent the best case scenario (in
terms of timely registration with the best accuracy) for those
methods determined by manual inspection of mean landmark
errors in registered test images. In practice, this information is
not known for each image and can significantly increase the
overall required computation time of those registration meth-
ods. To make all the results comparable, in all our experiments
involving sampling based methods, we used 4096 and 8192
samples at the sequential registration levels. We observed that
the registration accuracy does not change significantly with
small variations of the number of samples. The parameters
A and a0 are manually tuned to achieve the overall best
registration outcomes. Following [12], the value of A was set
to 10 and the mean land mark error for different values of
a0 were calculated. Overall, the a0 = 500 appeared to be the
most suitable, this value was kept constant for all the regis-
tration methods in order to make the results comparable. Our
experiments showed that the overall results is not significantly
affected by the small variations of a0 (increased or decreased
by two or three times).

In MSSE implementation the basic quick sort algorithm
was used in our experiments and the timing of different runs

showed that on average around 15% of the total computation
time was spent on the sorting step.

C. Analysis With synthetic images

To demonstrate the effectiveness of the proposed algorithm
in identifying the misregistered regions, a simulation study
involving a pair of synthetic images (constructed by deforming
a lung CT image with known deformations and adding normal
noise) was conducted. The second image was designed to
exhibit localized motions: changes are confined to two specific
regions of the image.

The above images were then registered using the proposed
method and the voxels classified as the second group (used in
the actual registration process) were separated and plotted in
Fig. 3(b) together with the surface rendering of the lung. To
show the correspondence between actual motion and identified
voxels, the actual motion field together with the surface
rendering of the lung image is shown in Fig. 3(a). These
images show that the proposed method has been able to
correctly identify misregistered voxels. The proposed methods
will in turn place more emphasis on these voxels during the
registration process.

D. Performance variation with noise

The impact of noise on the proposed registration algorithm
has been studied by creating images with known deformations
and additive normal noise. In those simulations a lung CT
image is first deformed using a predefined B-spline transform
that was calculated in a real image experiment using DIR
dataset. The intensities of both fixed and deformed images
were normalized between zero and one. Zero mean normally
distributed noise with standard deviation ranging from 0.0001
to 0.05 was added to both images. It is important to note that
since the lung densities cover only around 25% of the entire
range of Hounsfield values in the CT images, the maximum
noise of 0.05, which is added to the entire range of normalized
density values of both images, would represent a substantial
amount of actual noise in lung regions. The noisy images
were then registered with the proposed algorithms. Finally,
registration errors for each image pair were calculated using
a set of randomly distributed points and averaged over five
repeated experiments. The results of those experiments are
shown in Fig. 4. To show the actual amount of added noise
the registration errors are plotted in terms of the variance of
added noise in Hounsfield units. The figure shows that for
relatively large amounts of additive noise (compared to image
intensities), the registration error remains unaffected.

E. Experimental Results

The first set of experiments were conducted using the IS-
dataset. The registration accuracy of the proposed methods
in comparison with the competing methods using the above
dataset is shown in Table I. The result shows that the proposed
RIS method always achieves better results than the IS and
AR. Following recommendations by Dems̆ar [29] on statistical
comparisons of classifiers over multiple datasets, the final
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(a)

(b)

Fig. 3. The results of the simulation demonstrate the effectiveness of the
proposed algorithm in identifying the misregistered regions (a) The predefined
motion field together with the surface rendering of the lung. (b) Plot of all
voxels classified as the second group in the simulation.

mean registration errors achieved using different algorithms
were compared with RIS method using the Wilcoxon rank-sum
test [30]. The p-values, after Holms [31] correction, are given
in Table III. Those results show that RIS produces significantly
better results than the competing methods.

The limitation of the IS-dataset is that it has only six
annotated landmarks. To provide more compelling evidence,
we also conducted experiments using DIR-dataset [22], which
has 300 annotated landmarks. Those landmarks were used to
evaluate the registration performance of all methods based on
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Fig. 4. Performance variation of registration error of the proposed algorithms
verses the variance of manually added normal noise. The RS method is also
included for the sake of comparison.

their mean landmark errors. The results of those experiments
are shown in Table II. The table also includes the standard
deviation of the landmark errors and the maximum/minimum
of the mean errors of ten repeated experiments. A Wilcoxon
based statistical analysis similar to the IS-dataset was per-
formed on these results as well and the results are given in
Table III. The results show that the proposed RIS algorithm
performs significantly better than the competing algorithms.
Table III also shows the results for the Wilcoxon test using all
18 test images, which is in-line with the previous results.

To compare the performance of RIS in comparison with
the competing algorithms for each image of the DIR-dataset,
a Wilcoxon rank-sum test [30] was used (this test uses the
error at each landmark point averaged over ten repeated runs).
The p-values after correcting for multiplicity using Holms
procedure is given in Table IV. These results show that the
proposed RIS method in comparison to all competing methods
(AR, RS, IS) produce significantly better results in cases with
large deformations (DIR-C4 to C8). It is important to note that
the first few cases include very small motions and all methods
achieve very good registration results.

TABLE III
AVERAGE RUNNING TIME FOR EACH ALGORITHM AND THE HOLMS

CORRECTED P-VALUES OF WILCOXON RANK-SUM TEST THAT COMPARE
THE FINAL MEAN REGISTRATION ERROR OF COMPETING METHODS WITH

THE RIS METHOD.

IS-dataset DIR-dataset Combined
Time (s) p-value Time (s) p-value p-values

AR 348.0 0.03 1,757.0 7.81E-03 7.00E-04
RS 55.0 0.03 24.8 7.81E-03 7.86E-04
IS 112.0 0.03 100.0 0.03 1.07E-03

RRS 43.0 0.04 41.5 0.03 2.47E-03
RIS 65.0 - 86.5 - -

To compare the computational complexity of these methods,
the average computation time of all competing methods for
registration of all images in both datasets were measured and
the results are shown in Table III. We note that both RS and
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TABLE I
COMPARISON OF MEAN LANDMARK ERROR (EUCLIDEAN DISTANCE) FOR IS DATASET

MEASURED USING EXPERTLY IDENTIFIED LANDMARK POINTS.
IE1 AR2 RS3 IS4 RRS5 RIS6

IS-C1

Mean 15.1 4.5 4.39 3.69 3.61 3.39
Std 2.32 1.28 2.04 2.10 2.14
Min/Max 4.39/4.86 3.55/3.81 3.37/3.79 2.98/3.88

IS-C2

Mean 14.52 6.49 4.53 2.56 2.27 2.51
Std 9.81 3.64 3.00 2.67 2.38
Min/Max 4.34/4.65 2.11/3.05 1.59/2.79 2.48/2.58

IS-C3

Mean 13.31 4.57 2.74 2.62 2.31 1.77
Std 3.50 1.47 2.60 1.94 2.33
Min/Max 2.38/3.30 2.45/2.76 1.90/2.94 1.64/2.03

IS-C4

Mean 11.73 1.69 3.21 2.46 2.01 1.73
Std 0.89 2.70 2.02 1.46 1.10
Min/Max 2.52/3.96 2.26/2.81 1.69/2.39 1.38/2.00

IS-C5

Mean 9.13 2.66 3.46 3.24 2.14 1.62
Std 2.08 2.30 2.29 1.70 2.02
Min/Max 3.35/3.60 3.18/3.29 1.77/2.45 1.20/1.82

IS-C6

Mean 8.62 3.18 1.16 0.94 0.96 0.86
Std 2.23 1.30 0.99 1.17 1.19
Min/Max 1.06/1.20 0.62/1.25 0.62/1.19 0.75/1.06

IS-C7

Mean 7.77 1.82 2.43 1.86 1.86 1.39
Std 1.95 2.10 2.05 2.05 1.61
Min/Max 1.51/3.18 1.46/2.35 1.46/2.35 0.94/1.77

IS-C8

Mean 6.89 3.29 2.34 2.70 2.73 2.32
Std 2.35 1.93 2.17 2.33 1.96
Min/Max 2.08/2.79 2.53/2.79 2.48/2.92 2.15/2.47

Overall Mean 10.88 3.53 3.03 2.51 2.24 1.95
1 Initial Error without any registration 2 Adaptive Registration 3 Random Sampling
4 Importance Sampling 5 Robust Random Sampling 6 Robust Importance Sampling

TABLE II
REGISTRATION PERFORMANCE FOR IMAGES IN DIR-DATASET MEASURED USING EXPERTLY IDENTIFIED
LANDMARK POINTS. EACH ALGORITHM IS REPEATED 10 TIMES TO ACCOUNT FOR THE RANDOMNESS.

IE OE1 AR RS IS RRS RIS

DIR-C1

Mean 4.01 0.85 0.98 1.11 1.03 1.00 0.94
Std 2.91 1.24 1.51 1.01 1.00 0.99 0.96
Min/Max 1.06 / 1.14 0.99 / 1.12 0.96 / 1.03 0.90 / 0.99

DIR-C2

Mean 4.65 0.7 1.10 1.15 0.97 0.92 0.88
Std 4.09 0.99 1.87 1.23 1.06 0.97 0.97
Min/Max 1.11 / 1.25 0.90 / 1.00 0.85 / 0.98 0.84 / 0.96

DIR-C3

Mean 6.73 0.77 1.26 1.39 1.16 1.08 1.03
Std 4.21 1.01 1.68 1.25 1.15 1.10 1.08
Min/Max 1.32 / 1.48 1.11 / 1.21 1.04 / 1.12 0.96 / 1.10

DIR-C4

Mean 9.42 1.13 1.93 1.84 1.68 1.64 1.55
Std 4.81 1.27 2.24 1.51 1.32 1.33 1.26
Min/Max 1.77 / 1.89 1.62 / 1.74 1.61 / 1.69 1.48 / 1.64

DIR-C5

Mean 7.10 0.92 3.06 2.91 2.38 2.12 1.70
Std 5.14 1.16 4.50 3.03 2.66 2.29 1.68
Min/Max 2.70 / 3.09 2.26 / 2.56 2.02 / 2.23 1.59 / 1.84

DIR-C6

Mean 11.10 0.97 5.27 2.05 1.73 1.65 1.58
Std 6.98 1.38 8.29 1.70 1.26 1.21 1.19
Min/Max 1.95 / 2.22 1.66 / 1.85 1.54 / 1.70 1.48 / 1.71

DIR-C7

Mean 11.59 0.81 4.16 3.31 2.31 2.16 1.71
Std 7.87 1.32 6.03 3.40 2.35 2.08 1.27
Min/Max 3.03 / 3.55 2.14 / 2.58 1.95 / 2.58 1.63 / 1.81

DIR-C8

Mean 15.16 1.03 5.93 3.79 2.42 2.21 1.76
Std 9.11 2.19 7.12 4.54 2.74 2.55 1.74
Min/Max 3.33 / 4.05 2.27 / 2.62 1.96 / 2.49 1.64 / 1.86

DIR-C9

Mean 7.82 0.75 2.85 1.51 1.48 1.47 1.43
Std 3.99 1.09 2.64 1.22 1.23 1.17 1.09
Min/Max 1.47 / 1.57 1.42 / 1.51 1.41 / 1.54 1.34 / 1.53

DIR-C10

Mean 7.63 0.86 3.26 1.89 1.64 1.65 1.74
Std 6.54 1.45 5.40 1.84 1.46 1.55 2.03
Min/Max 1.79 / 1.93 1.53 / 1.71 1.50 / 1.73 1.54 / 2.13

Overall Mean 8.52 0.88 2.98 2.09 1.68 1.59 1.43
1 Observer Error: The mean reproducibility of the landmark extraction process which is measured using
several independent landmark selection experiments (see [22] for details).
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TABLE IV
HOLM’S ADJUSTED P-VALUES FOR THE WILCOXON RANK-SUM TEST
CONDUCTED BETWEEN THE LANDMARK ERROR OF RIS AND OTHER

COMPETING METHODS.

AR RS IS RRS
DIR-C1 0.34 1.36E-04 0.04 0.39
DIR-C2 0.07 1.64E-05 0.10 0.14
DIR-C3 0.10 9.54E-09 4.00E-04 0.03
DIR-C4 0.05 1.56E-04 1.37E-03 0.04
DIR-C5 1.46E-05 5.41E-16 7.61E-08 2.43E-04
DIR-C6 8.48E-09 1.09E-07 3.00E-04 0.17
DIR-C7 3.66E-08 7.65E-20 3.35E-08 1.09E-09
DIR-C8 2.47E-19 1.64E-08 1.37E-04 0.01
DIR-C9 3.67E-14 0.50 0.65 0.61
DIR-C10 2.27E-04 0.18 0.73 0.26

IS methods use fixed number of iterations as the stopping
criterion and their computation times would heavily depend
on the number of required iterations, which is considered an
input. The experiments showed that the computation time of
our methods are significantly lower than that of the competing
methods. The registration time for the AR method is signif-
icantly higher than other competing methods. This point is
shown in Table III and Fig. 5 (a) where the mean error of
all the algorithms (RS, IS , RIS, RRS and AR) are compared
against the time taken to achieve that level of accuracy for a
sample image (case 1). We also note that the proposed RRS
method is more than twice faster than the IS in both datasets.

Fig. 5 (b-d) shows the mean errors of all the sampling
based algorithms with the number of iterations taken to achieve
that level of accuracy. Those figures show that both proposed
methods reduce the mean error faster than RS and IS. We also
observed in our experiments that there are less sign changes
in the RIS estimated gradient of the cost function compared
to RS and IS. This implies that the step size reductions in RIS
are slower which contributes to its faster convergence. The
graphs also show that the convergence criterion described in
section III-B has been successful in stopping the registration
process at appropriate points (stable results).

To further analyse the performance of the proposed conver-
gence criterion, we compared the accuracy and computation
time of the proposed RIS method with and without the
proposed convergence criterion. Here, without convergence
criterion refers to RIS registration with a fixed number of itera-
tion (similar to IS and RS registrations). The results are shown
in Table V. The p-values (Holms Corrected) of Table V are
the results of a Two One-Sided Test (TOST) between the final
landmark errors achieved with and without the convergence
criterion. These numbers show that the mean landmark errors
achieved with and without the proposed convergence criterion
are equivalent (within a margin of 5% of the initial landmark
error). Calculating the average of the last column of Table V
shows that an average time saving of around 44% is achieved
by using of the proposed convergence criterion.

To show that there is a linear correlation between the
proposed convergence criterion Ck and the registration accu-
racy throughout the registration process, Pearson’s correlation
coefficients between the actual registration accuracy measured
using mean landmark error and Ck at the end of each iteration
for the top level are enumerated in Table VI. The results show

TABLE V
THE IMPROVEMENT OF THE REGISTRATION TIME DUE TO THE USE OF

CONVERGENCE CRITERION AND THE RESULTS OF THE TOST (LOW
P-VALUES MEANS THE RESULTS ARE STATISTICALLY EQUAL).

Mean Mean TOST Time Time
LM Error LM Error p-value Without saved
With CC Without CC %

CC
DIR-C1 0.94 0.96 5.6E-04 85.3 13.4
DIR-C2 0.88 0.93 1.3E-03 123.6 43.9
DIR-C3 1.03 1.11 2.3E-04 119.2 64.7
DIR-C4 1.55 1.60 2.4E-07 115.4 34.0
DIR-C5 1.70 1.62 6.7E-04 124.3 62.1
DIR-C6 1.58 1.66 5.1E-10 142.7 64.0
DIR-C7 1.71 1.79 5.1E-10 138.7 87.7
DIR-C8 1.88 1.85 5.3E-14 153.4 20.9
DIR-C9 1.43 1.45 9.8E-07 99.23 40.6
DIR-C10 1.74 1.74 4.4E-05 124 12.3

that there is a strong linear correlation between the measure
for convergence criterion and the actual registration error.

TABLE VI
THE MEASURE OF CORRELATION BETWEEN THE PROPOSED

CONVERGENCE CRITERION AND THE ACTUAL REGISTRATION ERROR
MEASURED USING EXPERT IDENTIFIED LANDMARKS. A VALUE IN EXCESS

OF 0.5 FOR PEARSON’S CORRELATION INDICATES A STRONG LINEAR
CORRELATION. IMAGES FROM THE DIR DATASET IS USED.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
0.93 0.96 0.76 0.86 0.8 0.89 0.7 0.9 0.87 0.82

To visualize the registration quality of the proposed methods
the intensity difference image of three slices before and after
the RIS registration are shown in Fig. 6. Those slices show
that the registration errors have reduced significantly after the
registration with the proposed method.

V. DISCUSSION

This paper has presented a new approach to focus the
registration on misregistered points identified using a rank
ordered statistics based robust segmentation technique. Experi-
ments using lung CT images showed that the proposed method
achieved high registration accuracies compared to similar
methods. The registration time for the proposed method was
also significantly reduced using a new convergence criterion.

It is not surprising to see that the RS method, due to its
simplicity, is computationally more efficient than all of the
above methods. However, the accuracy of the random sampling
method is poor. Our experiments showed that running the
RS with more iterations would not improve its registration
accuracy. To provide an example, the mean errors of case five
using the random sampling algorithm with significantly higher
number of iterations (100 and 400 for two registration levels
compared to 60 and 100 originally) are shown in Fig. 7. This
figure shows that the accuracy of the RS method does not
increase by increasing the number of iterations. This is due to
the fact that in stochastic optimization, to ensure convergence,
the step sizes are incrementally reduced and when the step
size is very small, no significant improvement is made from
additional iterations. A Two One-Sided Test (TOST) was
conducted with the null hypothesis: Mean registration Errors
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Fig. 5. (a) Rate of the mean landmark error reduction over time for different registration methods for Case 1. (b-d) Rate of decrease of mean landmark error
vs number of required iterations for different methods in cases where registration involves significant deformations.

of RS with low and high number of iterations are not equal
(the margin is set to 5% of the error before registration).
The p-values after correcting for multiplicity using Holms
procedure were also calculated and the results showed that
the accuracy of the RS does not improve significantly as the
number of iterations increases. The RS algorithm was also
tested with three times more samples per iteration. Again, the
RS final mean error did not significantly change by increasing
the sample size.

To show the effect of using rank order statistics based
segmentation during registration, joint histograms of fixed and
moving images before and after the application of MSSE are
shown in Fig. 8. Those figures show that the segmentation
strategy has been successful in removing the high density
clusters that appeared in the joint histogram and focusing the
optimization on the target voxels.

To test the hypothesis: misregistered regions can be iden-
tified using robust segmentation of voxels in the intensity
difference image, the median landmark errors were calculated
for the landmarks that either belong to inlier (group one)
or outliers (Groups two and three). The median is robust
to influence of outliers and presents a rigorous performance
measure. The median landmark errors, presented in Table VII,
show that landmark errors of group one are significantly lower
than those of the group two and three.

Registration results for images in the DIR-dataset are re-

TABLE VII
MEDIAN OF THE LANDMARK ERRORS BELONGING TO GROUP ONE AND

GROUPS TWO PLUS THREE.

Median Inlier Median Outlier
Error Error

DIR-C1 1.94 2.68
DIR-C2 2.76 4.12
DIR-C3 2.98 3.45
DIR-C4 3.39 5.13
DIR-C5 3.33 5.18
DIR-C6 4.00 13.12
DIR-C7 5.01 12.50
DIR-C8 6.40 7.93
DIR-C9 3.71 5.09
DIR-C10 2.85 4.62

ported at www.dir-lab.com and according to these results the
best registration is achieved with Least median of square
Filtered Compressible flow (LFC) [32] and 4 Dimensional Lo-
cal Trajectory Modeling (4DLTM) [33]. Comparison of those
results shows that the above methods achieved comparable
or better registration accuracies to the proposed methods. It
should however be noted that the errors of LFC and 4DLTM
cannot be directly compared with the errors we computed
for RIS and RRS, as those reported in the paper were on
1200 landmarks per image while a subset of 300 landmarks
per image was available publicly. It is important to mention
that the 4DLTM method uses all the images from the 4D-
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(a) (b) (c)

(d) (e) (f)

Fig. 6. Axial, Sagittal and Coronal slices of the intensity difference image
between fixed and moving images (DIR-Case 5) before registration are shown
in (a),(b),(c), respectively. (d),(e) and (f) show the Axial, Sagittal and Coronal
slices of intensity differences between fixed and transformed moving images
after RIS registration.
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Fig. 7. Mean error of each iteration for algorithms RIS, RRS and RS. The
maximum number of iterations for RS has been increased to 100 and 400 in
the two registration levels respectively. The image used is DIR-Case 5.

CT dataset whereas the proposed methods only use the two
images corresponding to the extremes of the respiratory cycle.
The use of intermediate images by the 4DLTM method means
that the algorithm has to process significantly more data than
methods using only two extreme images. The execution time
of the LFC method (reported in [32]) is an indication of the
large amount of required computation in this method. As such,
the above methods are specifically developed to register lung
CT images and use more information than proposed methods
making them computationally expensive.

(a) (b)

Fig. 8. The joint histogram of the fixed image (If (x)) and the transformed
moving image (Im(T (x))) for case 5 of DIR-dataset at the 10th iteration (a)
contains all the voxels. (b) contains only the voxels identified as the middle
group by the MSSE.

A drawback of the proposed methods is that, since those
methods rely on the intensity difference for sample selection,
the change of intensity with a change in inspiration level in
case of large deformations can affect the performance of the
these methods. Other authors have shown benefit of using a
mass preserving intensity model that adjusts intensity accord-
ing to volume changes [34]. Such a model can be incorporated
in the proposed approach and may still improve results over
those presented here. Extension to multimodal registration is
however less straightforward. In such cases one would need
to find appropriate clustering schemes to remove the almost
registered data from the images of different modality for the
application of the proposed registration methods.

Several recent registration algorithms have been imple-
mented using Graphics processing units (GPUs) to accelerate
the computation of those methods [32], [35]–[37]. An algo-
rithm has to be parallelizable in order to take advantage of
these computers. In our implementation we use a B-spline
transformation to represent the deformation field and the
optimization is performed using analytical gradients of the
SSD cost function with respect to the B-spline coefficients.
In our approach the computation time is reduced by using
only a carefully selected subset of voxels in the calculations.
Another method to decrease the computation time would be
to use a GPU to calculate the gradients. This is because
the B-spline coefficients has only a compact support and the
memory on the GPU is shared by all the cores, therefore
the derivative calculation step can be easily parallelized as
illustrated by Rohlfing et al. [38]. An issue for the GPU
implementation of this method is that the sorting step of the
proposed methods cannot be easily parallelized. Having said
this, we have observed that the sorting step on average takes
only around 15% of the overall computation time even when
the basic “qsort” algorithm was used for sorting.

VI. CONCLUSION

The paper presented a new approach for non-rigid registra-
tion of medical images based on using robust segmentation
of squared intensity differences to intelligently guide the
sampling part of the stochastic optimization. The performance
of the proposed approach in terms of registration accuracy and
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computation time was compared with several existing methods
via an extensive set of experiments on images with ground
truth. The experiments showed that the proposed method
substantially improves both the accuracy and the computa-
tional complexity of the registration task. More importantly,
the method incorporated a computationally efficient means of
measuring the quality of registration. Since the registration
schemes are all iterative, this measure proved to be highly
useful for deciding when to stop the registration process.
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