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Abstract—This paper presents an innovative method for mo-
tion segmentation in RGB-D dynamic videos with multiple
moving objects. The focus is on finding static, small or slow
moving objects (often overlooked by other methods) that their
inclusion can improve the motion segmentation results. In our
approach, semantic object based segmentation and motion cues
are combined to estimate the number of moving objects, their
motion parameters and perform segmentation. Selective object-
based sampling and correspondence matching are used to es-
timate object specific motion parameters. The main issue with
such an approach is the over segmentation of moving parts due
to the fact that different objects can have the same motion (e.g.
background objects). To resolve this issue, we propose to identify
objects with similar motions by characterizing each motion by a
distribution of a simple metric and using a statistical inference
theory to assess their similarities. To demonstrate the significance
of the proposed statistical inference, we present an ablation study,
with and without static objects inclusion, on SLAM accuracy
using the TUM-RGBD dataset. To test the effectiveness of the
proposed method for finding small or slow moving objects,
we applied the method to RGB-D MultiBody and SBM-RGBD
motion segmentation datasets. The results showed that we can
improve the accuracy of motion segmentation for small objects
while remaining competitive on overall measures.

Index Terms—RGB-D Motion Segmentation, Multibody Struc-
ture and Motion, Dynamic SLAM, EVT, Kolmogorov–Smirnov
test

I. INTRODUCTION

Segmentation of independently moving objects in a complex
dynamic scene, and estimation of their individual motion
parameters (i.e. motion segmentation) are important tasks in
many computer vision applications. Applications of motion
segmentation include autonomous navigation [1], path plan-
ning [2], obstacle avoidance, surveillance and tracking in
robotics or in autonomous driving [3]. Motion segmentation is
also currently used in applications such as augmented reality
[4] and scene flow estimation [5].

The complexity in motion segmentation is analogous to the
chicken-and-egg problem. If the model parameters for each
motion was known a priori, it would be trivial to derive the
correct segmentation of data. If the segmentation is known, the
model parameter estimation can be easily performed. However,
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Fig. 1: A simple motion segmentation example to show the
challenges of using object segmentation as a prior for motion
segmentation. (a) Sample image (b) Ground truth segmentation
(c) Mask-RCNN object segmentation and (d) the output of our
method. The black arrow in (c) shows a missed detection (the
box is not detected even though it is moving because it is not
one of the training object classes) and the red arrow shows
over-segmentation (the table that belong to background motion
is assigned a separate label)

solving the motion segmentation problem is challenging when
both the motion models, and the segmentation, is unknown.
The fact that available data is often inaccurate, and has high
percentages of outliers (leading to wrong data association),
adds to the challenge [6].

Segmentation of small or slow moving objects in a complex
dynamic scene remains a particular challenge. A small motion
can easily be mistaken as an inlier of the background camera
motion and will become a source of error in the estimation of
camera pose.

In general, motion segmentation is based on data driven
bottom-up approaches like geometric, algebraic, model se-
lection, flow based and tracking methods [7]. Most of these
techniques use motion cues from texture-based optic flow and
structure-based iterative closest point algorithms to obtain data
correspondences. These methods require prior knowledge of
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the number of moving objects and work well only if the correct
data correspondences are known.

With recent advances in deep learning, several methods
have emerged that can generate accurate and reliable semantic
segmentation [8]. This led to top-down approaches for motion
segmentation based on tracking of objects detected by such
high-level instance segmentation methods [9], [10]. Methods
like Mask-RCNN [8] and RGB-D data-based segmentation
[11] fail to detect objects when there are not enough 2D or
3D features. However, as we show here, this situation may
be salvageable by using motion information. These learning
methods also miss objects unseen in training data as the
detector is only trained on a small range of object classes
(black arrow in Fig 1 (c) for Mask-RCNN).

Combining high-level information from top-down ap-
proaches and low-level information from data-driven bottom-
up approaches leads to many advantages. High-level informa-
tion helps bottom-up approaches by providing object specific
sampling and correspondence matching leading to accurate
object specific motion estimation. Low-level information helps
top-down approaches to correct the missing detection problem
by using the motion cues to detect anything that moves. Our
method segments unidentified objects due to the combination
of both approaches (Fig 1 (d)).

The main issue of combining top-down and bottom-up
approaches is the over segmentation of moving parts. All
detected objects are tracked and motion models are generated
for each one of the detected objects. Static objects (objects
moving similar to the background) and dynamic objects are
not differentiated (red arrow in Fig 1 (c)).

To resolve this issue, we propose to use statistical inference
methods to combine similar motions (called statistical model
fusion) and convert object-based segmentation (usually over-
segmented) to accurate motion segmentation. An example of
combining similar motions is shown in Fig 1 (d) (static object:
table is combined with background). In this example, the
background motion is made more detectable as a result of
considering extra features associated with the static object
(table). The use of statistical inference in this case leads to
better accuracy for both motion parameter estimation and seg-
mentation (also improves camera ego-motion or background
motion estimation).

The main contribution of this work is to introduce a new
framework, which combines top-down and bottom-up cues, to
perform motion segmentation by formulating the problem as a
statistical inference problem. The significance of this method
is that it is capable of handling small motions of small objects
and combining objects with coherent motion in the presence
of high percentage of outliers (wrong data associations and
failure in object detection). This is achieved by:

• A top-down approach that uses semantic information to
perform object specific sampling: enabling concentration
on small motions of small objects (in line with [9], [10]).

• A bottom-up approach that uses the object specific data
from top-down approach to estimate motion parameters
by measuring goodness of the data association, to switch
between variants of Iterative Closest Point (not requir-

ing data association) and Robust model fitting methods
(requires data association).

• A new approach for combining similar motions by for-
mulating the problem as a statistical inference, and solve
the over segmentation issue by using one of the Extreme
Value Theorem [12], Kolmogorov–Smirnov test [13] or
Wilcoxon signed-rank test [14].

This paper is organized as follows: Section II introduces the
related work. Section III provides description of our motion
segmentation pipeline and the statistical model fusion algo-
rithm. Section IV shows a comparative study of three different
model fusion methods on a synthetic dataset. Ablation studies
on real data shows performance with and without using model
fusion. Experimental results on RGB-D Multi-Body motion
segmentation dataset shows the effectiveness of our method
to identify small motions. Section V concludes the paper and
discusses future work.

II. RELATED WORKS

A. Motion Segmentation: Definition

Motion segmentation in a complex dynamic scene involves
clustering areas with coherent motion, and estimating their
motion parameters (which can include camera ego-motion).
Grouping of parts or pixels that are moving with coherent
motion is an ill-defined problem. For instance, [15] defines
and then attempts to resolve the ambiguities in motion seg-
mentation for cases in which only a part of an object moves.
According to their definition, the entire object should be
segmented even if a part of the object moves and objects
remain stationary for a few frames need not be segmented
(unlike tracking). In contrast to motion segmentation, video
object segmentation involves the identification of objects of
interest in the entire video. Those objects are considered the
main foreground that are moving partially between frames. A
detailed description of these two problems and a survey of
their solutions are provided by [16].

B. Motion Segmentation: 2D methods

To provide a clear picture of the advantages of using differ-
ent types of 2D motion segmentation methods, we classify
those into distinct categories: geometric, algebraic, model
selection, flow based and tracking methods. Those approaches
are briefly described here.

Geometric methods segment data using epipolar constraints
[17] while minimizing reprojection errors. Algebraic ap-
proaches listed include: Generalized Principal Component
Analysis (GPCA) method [18], which uses feature trajectories
and factorizes data into multiple subspaces, Subspace clus-
tering, which represents high-dimensional data by the union
of low-dimensional subspaces each associated with a separate
motion, and Sparse Subspace Clustering (SSC) method [19],
which was developed to handle missing correspondences in
motion data by using sparse representation of motion clusters.

Model based methods select the motion models that best
fit segmented data using RANSAC [20] or its variants [21],
[22]. The models are based on Fundamental matrix, Essen-
tial matrix, Homography or Affine transformations between
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consecutive images. Fitting procedures generally prefer higher
number of model instances to increase fidelity to data (causing
over-segmentation) and choose complex models (with higher
degrees of freedom) to increase smoothness when the number
and type of motion models are unknown a priori. Achieving
an effective balance between fidelity and smoothness is shown
to be difficult [23]. However, these methods have shown to be
capable of handling degenerate motions.

Flow-based techniques rely on the brightness constancy
assumption, and perform motion segmentation by either clus-
tering of optic flow [24] or scene flow [25]. These methods
often fail when there are degenerate motions or textureless
objects. Tracking methods generally use particle filters [26] for
estimating motion models. The tracking methods are limited
to scenarios with only a few moving objects as tracking
multiple objects increases the number of required particles
exponentially.

C. Motion Segmentation: 3D methods

In contrast to 2D methods that are limited to using bright-
ness patterns, 3D motion segmentation can take advantage
of depth measurements from Kinect type sensors (RGB-D
data) to achieve either sparse feature based or dense pointwise
based motion segmentation. Sparse feature based methods,
like the one proposed by Gruber et al. [27], track a set of
feature points, to factorize noisy data into multiple mov-
ing objects. The issue is that factorization based methods
are offline methods and require entire feature trajectories
to perform segmentation. In another feature based method,
proposed by Rothganger et al. [28], motion segmentation
is performed by tracking and matching features of planar
patches of a 3D scene. Consequently, 3D objects that cannot
be modelled by a combination of planar patches are not
tracked. Agrawal et al. [29] used matched features from stereo
pairs to obtain 3D points, which were tracked to estimate
3D motion segmentation using RANSAC. This method cannot
handle multiple moving objects. Samunda et al. [30] used the
Delaunay triangulation method on distances between feature
points to achieve segmentation. This method can therefore only
work for rigid objects. Multimotion Visual Odometry [31] uses
stereo data, applies multi model fitting on sparse features to
create tracklets and improves the initial segmentation by merge
and split operations.

Dense pointwise 3D segmentation methods are developed
for scene reconstruction in SLAM and autonomous driv-
ing applications. Dense methods, like the one proposed by
Roussos et al. [32], use RGB images to estimate dense
motion segmentation and reconstruct 3D scenes by energy
based multiple model fitting methods. In contrast, methods
proposed by Stückler et al. [33] and Bertholet et al. [34] use
RGB-D data. The former introduced a dense RGB-D motion
segmentation using expectation–maximization (EM) on point
clouds converted to 3D voxels at different resolutions while the
latter proposed energy minimization by introducing a sensor
noise model and an occlusion handling method to segment
temporally consistent tracklets. The above methods use batch
processing on entire sequence to perform segmentation.

D. High-level Semantic information-based motion segmenta-
tion

Advances in deep learning for object recognition have
enabled the use of high level semantic based information in
different computer vision applications. Motion segmentation is
no exception and the advent of accurate and reliable semantic
segmentation tools such as Faster-RCNN [35] or Mask-RCNN
[8] has led to use of high-level interpretations for motion seg-
mentation. For instance, the 2D motion segmentation method
presented in [36] combines semantic and geometric properties
in a way that high-level object motions of real objects like
pedestrians are modelled as composition of many low-level
rigid motions.

For RGB-D motion segmentation using semantic informa-
tion, Co-Fusion [37] uses motion cues or instance segmenta-
tion to perform multiple model fitting and track the segmented
objects using Elastic-Fusion [38] to produce surfel maps of
the static environment. Mask-Fusion [9] extends Co-Fusion
[37] by using semantic segmentation from Mask-RCNN [8]
(refined with geometric edge information) to track individual
objects and generate semantically labelled surfel maps. Such
instance object segmentation based methods cannot handle
non-rigid objects and their tracking would fail in cases where
objects lack texture and are not identified by recognition tools.
To take advantage of motion information, MID-Fusion [10]
was proposed in which the Mask-RCNN [8] based object
segmentation results are refined by both motion and geometric
information. Volumetric Octree maps capable of modelling
free space and connectivity were used for tracking every ob-
ject, individually. EM-Fusion [39] has recently been proposed
to add the occlusions handling to the above framework and
uses signed distance functions to represent objects.

Similar to above methods [9], [10], [39] , our approach
targets the use of high-level semantic information. However,
existing methods are unable to combine static objects with
static background (treat them as different objects) and their
tracking is heavily dependent on the success of the object
recognition part. In contrast, our system combines static ob-
jects with the static background to increase the detectability
of the background motion (provide more features due to the
inclusion of static objects) and tracks the dynamic objects,
only. Our method also creates virtual masks for the uniden-
tified objects using motion information and can therefore
compensate for the object detection errors.

E. Dynamic SLAM

One of the important applications of motion segmentation
is the Dynamic SLAM [7]. As real world applications often
contain dynamic objects, the static environment assumption
used in many SLAM methods, creates false feature corre-
spondences. This leads to drift in pose estimation and false
loop closures. Recent works address this issue by using motion
segmentation to remove dynamic content from the data.

For instance, the well-known feature based ORB-SLAM2
[40] has been improved by being fed with only static content.
In the method presented by Li and Lee [41], depth edge
points (for every keyframe) were used to distinguish between
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dynamic and static points by measuring their reprojection
errors. To improve further, Zhang et al. [42] added line
features to the depth edge features for estimating the likelihood
of features being static. Similarly, Wang et al. [43] used a
clustering method to segment trajectories and exclude dynamic
points from the energy minimization step. This method would
only work off-line as it requires long-term video trajectories.
To take advantage of high level information, DynaSLAM
[44] combines multi-view geometry and deep learning for
tracking, mapping and inpainting in dynamic scenes while DS-
SLAM [45] uses semantic information along with moving time
consistency and tracking to remove dynamic objects. The use
of high level information is shown to improve the accuracy of
SLAM methods in dynamic environment.

The above feature-based SLAM methods perform poorly
in the presence of motion blur, curved edges and low textured
environments [7]. To improve the performance of dense RGB-
D based SLAM in dynamic applications, the DVO SLAM
[46] method was adapted in different ways. For instance,
BaMVO [47] advocated learning for background modelling
of depth data and using the model to reduce the influence
of dynamic objects. Motion removal RGB-D SLAM [48]
advocates building (and incrementally updating) a foreground
model by learning and then inferring a pixel-wise dense
likelihood (for being a foreground point). The paper also states
that the method cannot handle small motions as reprojection
errors of those small motions and the static objects, do not
differ significantly.

III. PROPOSED METHOD

Given two consecutive color images It−1 and It and the
corresponding registered depth images Dt−1 and Dt, the
proposed motion segmentation algorithm outputs are:
• Number of independent moving objects K.
• Segmentation labels for each pixel L = {li}Ni=1 where
li ∈ {0, 1, 2, · · · ,K} are independently moving objects
with 0 representing the background and N is the number
of pixels in the image.

• The motion Models for each independently moving object
F = {Fi}Ki=0

As the algorithm deals with 3D data, we use
the six degrees of freedom rigid motion model
represented by three-dimensional translation vector
T and Euler angles of rotation forming a six tuple
Fm =

{
T

(m)
x , T

(m)
y , T

(m)
z , R

(m)
x , R

(m)
y , R

(m)
z

}
. An overview

of the proposed process flow pipeline with step by step results
is shown in Fig 2. The first step is the top-down branch that
performs semantic object segmentation. The next step is to
take advantage of the high-level semantic segmentation and
perform selective sampling to obtain point correspondences.
The third one is the bottom-up part that uses data points from
a specific sampled object to robustly estimate the motion
model using data correspondences, or switching to Iterative
Closest Point algorithm if appropriate correspondences are
not found. The final step is to convert object based semantic
segmentation to motion segmentation by combining similar
motion models using a statistical inference theory.

The above pipeline is designed to use well established sta-
tistical model fusion theory to combine globally working high-
level information (deep learning based semantic segmentation)
to guide the locally working (data driven robust geometric
model estimation method). We will show that the combined
results are comparable to the best available methods while the
proposed method can identify small moving objects that are
frequently missed by other motion segmentation algorithms.

A. Object mask proposals

For the top-down approach, we feed color images It−1 and
It to Mask-RCNN [8] to obtain object masks. For each image
we obtain JM binary masks {Mj}JMj=1 corresponding to JM
objects. A background mask is created as the collection of all
pixels in an image not labelled by Mask-RCNN as an object:
M0 = {M1 ∪M2 ∪ · · ·MJM }.

For every mask Mj at time t, we calculate its corresponding
mask M̂j at time t − 1 using a simple thresholding on the
percentage of overlapping area between them. This assumption
holds as we are mainly dealing with small motions in videos
that generally have high frame rates. In applications where
the above assumption does not hold, one can use point
correspondences from a method like DeepMatching [49] that
is known to handle large motions.

Mask-RCNN may not detect some objects and this can
cause false object correspondences. This problem is overcome
by utilizing the motion cues provided by optic flow between
It−1 and It. First, the dominant motion in the background, F0,
is estimated using the background masks of the two frames
It−1 and It (M0 and M̂0) and the corresponding optic flow.
Points (called outliers) in M0 that do not belong to F0 are
identified using MSSE [50]. Those points are likely to belong
to an undetected moving object if they are spatially grouped
(see below). Based on this assumption, we cluster these points
(outliers) into spatially consistent sub groups using the 3D
Euclidean distance as the affinity measure:

A (i, j) = ‖xi − xj‖22 (1)

where xi, xj are the 3D coordinates of each point. This leads
to a simple clustering problem that can be solved in many
different ways. Here, we use a simple iterative fit and remove
procedure: chose a random point from outliers and calculate
its distances to every other point using equation (1). The
distances calculated are input to MSSE [50] to obtain the
group of points that are spatially close to the chosen point.
The selected points are then removed, and the above process is
repeated until the number of remaining points are smaller than
a fix threshold. This clustering procedure generates JO binary
masks {Mj}JOj=1 corresponding to JO undetected dynamic
objects. The correspondences for background and all object
masks are then updated using J = JM + JO object masks.

B. Point correspondences and selective sampling

Optic flow is calculated by the publicly available median
filtering based implementation of [51] to obtain 2D corre-
spondences. We further improve the optic flow by imposing
a constraint that restricts the matching between pixels in It
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Fig. 2: The framework of our method. The raw images are converted to object segmentation using Mask-RCNN. Then the
object-based sampling and matching are used to estimate initial object motion parameters. Resulting over-segmentation is
resolved by combining similarly moving parts using statistical inference. Finally motion models are re-estimated and both

camera and moving object trajectories are calculated.

belonging to object Mj and pixels that belong to the same
corresponding object mask M̂j in It−1.

Many RGB-D algorithms typically use uniform downsam-
pling to reduce the computational cost of their algorithms.
However, such actions can lead to poor outcomes for small
sized objects particularly when they are also far from the
camera. To avoid this, we sample the point clouds Xt & Xt−1
by using the size of object and its distance from camera, in a
way that:

gridstepi =
k · area (Mi)

depth (Mi)
(2)

where Mi is the mask for object i and k is a commonly used
constant grid sampling factor (set to 5 in all of our experiments
to keep the computation feasible).

C. Robust model estimation

In our proposed approach, initial estimates for the motion
models are calculated for all the separately detected objects
F = {Fj}Jj=0 using the sampled point clouds Xt & Xt−1

along with object masks M = {Mj}Jj=0 and the improved
optic flow field vector (u, v) (explained in the previous sec-
tion).

Data correspondences of every object (or mask) is classified
as good or bad based on the median color gradient within
the object mask. Gradient magnitude is calculated using the
Sobel operator with a 5-by-5 neighbourhood for the entire
image It and the values are normalized between 0 and 1. The
median (as a robust measure) value of gradient magnitudes
for pixels belonging to the object mask, Mi, is then compared
with a threshold (0.01 in all our experiments) to decide if the
object has good data correspondences (with sufficient texture
information).

Good data correspondences indicates that the object has suf-
ficient texture and its motion model can be reliably estimated
by registering Xt of its mask with their correspondences in
Xt−1 using 2D optic flow and depth information. Initial trans-
formation Rmsse and Tmsse using the MSSE [50] algorithm
is further refined by using a variant of Iterative Closest Point
that includes color information (called CICP [52]) to obtain
Ricp and Ticp. The total transformation is then presented by:

R = Ricp ·Rmsse, T = (Ricp · Tmsse) + Ticp. (3)

The motion model for objects with bad data correspon-
dences is estimated by registering Xt & Xt−1 using ICP on
depth values, only.

Articulated objects have to be considered differently as there
won’t be any single rigid transformation motion model that
accurately explain their motions. Objects with low percentage
of inliers with respect to the initial model estimates are also
classified based on threshold as articulated objects for simplic-
ity. We segment articulated objects with a single semantic label
but represent them as a composite of multiple sub-segments
with separate motion parameters (e.g. humans are represented
by head, arms, legs and body each moving differently). This
composite information is useful for applications like scene
understanding, anomaly detection and action recognition [36].

For articulated objects classified by the above step, we
perform spectral clustering to oversegment it into multiple
rigid sub-segments based on their optic flow and spatial extent.
The affinity matrix A for the clustering is defined as:

A (i, j) = α ·Am (i, j) + (1− α) · ‖xi − xj‖22 . (4)

where xi, xj are the 3D coordinates of the mask’s points and
Am is the model based affinity matrix.
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The first term Am in equation (4) represents the motion
coherence of two points for a given motion model and is
calculated using Algorithm 1 of [22]. In this algorithm, a fixed
number of motion model hypotheses (generated using random
sampling of optic flow vectors within a mask) are combined to
generate the affinities between all points within that mask. The
second term in equation (4) represents the spatial smoothness
and advocates for spatial contiguity. Combining these two
factors results in articulated objects being segmented into
multiple rigid moving parts, which paves the way for using
rigid motion models.

The above procedure generates initial model estimates for
three groups: objects with good or bad correspondences and
articulated objects. This means that all objects, irrespective of
their motions, are segmented and one needs to find a way to
combine similarly moving (or stationary) objects.

D. Statistical model fusion

This paper presents an innovative statistical approach for
converting initial object-based segmentation (and motion
model estimates) Fin = {Fj}Jj=0 to motion based segmen-
tation Fout = {Fk}Kk=0. The approach is based on posing the
problem of identifying similar motions (e.g. combining static
objects with background) as a statistical inference problem.

At the beginning, one object and its initial model estimate
is chosen as a reference model (e.g. background M0 and
its motion model F0). The reference model can then be
characterized by a distribution (called reference distribution)
formed using a normalized histogram of the reference object
residuals with respect to its model. Residuals are taken to
be the norm of Euclidean difference between points in Xt

belonging to M0 and transformed corresponding points in
Xt−1 using F0. One would expect to see a χ2 type distribution
(with zero mode) for a properly segmented object.

To test if another object Mj has a motion similar to the
reference object M0, a test distribution is formed using the
residuals of the new object with respect to the reference
motion model F0. We know that by definition, two objects
with similar motions should have similar test and reference
distributions while objects with different motions can’t have
the same (based on a statistical significance measure) test and
reference distributions. Test distribution of a dynamic object
should have a non-zero mode signifying the fact its motion is
different from the reference model.

The art of deciding if two sets of observations are sam-
ples of the same distribution is called statistical hypothe-
sis testing. There are two well-known test statistics, called
Kolmogorov–Smirnov-Test (KS) and Wilcoxon-Signed-Rank-
Test (WSR), to compare observations X from reference dis-
tribution and observations Y from test distribution. We have
also adapted the statistical Extreme-Value Theory (EVT) to
generate a test for the same problem. These three methods are
explained here and their effectiveness on synthetic and read
data are compared in section IV.

1) Kolmogorov–Smirnov test: KS-Test is a nonparametric
statistical test [53] that uses an empirical cumulative distri-
bution function to compare either one set of samples with

(a)

(b)
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Fig. 3: Testing similarity of two different distributions using
three Statistical methods. (a) Two input distributions. (b)
Shows the estimated Weibul CDF of the reference and its
associated value for the median likelihood estimate of the

test distribution for EVT-Test. (c) Comparison of the
empirical CDFs of reference and test distributions for

KS-Test. (d) Symmetry analysis for WSR-Test.
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Algorithm 1 Statistical model fusion.
Input: Point clouds Xt, correspondences in Xt−1, Object
masks M and corresponding initial motion models Fin.
Output: Fused masks M and combined motion models Fout.

1: Fout = ∅
2: repeat
3: i← index of a random reference model in Fin.
4: X

(i)
t , X

(i)
t−1 ← Points in mask Mi.

5: X
(i)
inliers ← Inliers to model Fi.

6: Ei ← Ref. sample - Residuals of X(i)
inliers to Fi.

7: for all model j in Fin, j 6= i do
8: X

(j)
t , X

(j)
t−1 ← Points in mask Mj .

9: X
(j)
inliers ← Inliers to model Fj .

10: Ej ← Test sample - Residuals of X(j)
inliers to Fi.

11: f ← Fuse(Ei, Ej ,Method)
12: if f = True then
13: Fused mask Mi ←Mi ∪Mj

14: Fi ← Re-estimate model by new Mi using (3)
15: Fin = Fin \ Fj , M =M \Mj .
16: end if
17: end for
18: Fout = Fout ∪ Fi
19: Fin = Fin \ Fi.
20: until Fin = ∅

a reference distribution or two sets of samples directly (two
sample KS test). To perform the latter, empirical cumulative
distribution functions are built from the two sets of given
samples. Empirical cumulative distribution function (CDF) for
n independently and identically distributed (iid) samples of set
X is as follows.

FX (x) =
1

n

n∑
i=1

Ix (Xi) (5)

where Ix (Xi) is an indicator function such that:

Ix (Xi) =

{
1 if Xi ≤ x
0 if Xi>x.

(6)

The maximum difference between two empirical CDFs
provides a distance statistic.

DX,Y = sup
t
|FX (t)− FY (t)| (7)

The above distance has in the past been used for adaptive
clustering [54]. Here, we use this to fuse similar motion mod-
els (for a given confidence interval). In this test, DX,Y ≤ tα
indicates that there is not enough evidence to conclude that sets
X and Y follow different distributions. However, DX,Y > tα
indicates the existence of strong evidence for sets X and Y
to be samples of different distributions. The value of tα is
calculated based on the chosen significance level α and the
number of samples in sets X and Y [53].

2) Wilcoxon signed rank test: Another popular nonpara-
metric statistical test is the WSR-Test [55]. The test is based
on using rank of differences between two sets of samples

to decide on their similarity. The test extends the student t-
test, which only works for comparing normal distributions, to
be applicable to compare samples of general nonparametric
distributions. In this method, differences between paired ob-
servations from both sets are calculated and ranked based on
their absolute values. The minimum (W ) of the sums of the
ranks of both positive (W+) and negative (W−) differences
are then used to calculate the probability of samples having
the same distributions (p). Two sets of X and Y are said
to be sampled from the same distribution if the difference
between their paired observations are symmetric around zero
(P (X > Y ) = P (Y > X)) and otherwise if the differ-
ences are non-symmetric around zero.

W+ =
∑

∀i:sgn(Xi−Yi)=+ve

rank (|Xi − Yi|) (8)

W− =
∑

∀i:sgn(Xi−Yi)<−ve

rank(|Xi − Yi|) (9)

W = min
(
W+,W−

)
(10)

Similar to KS-Test, p ≥ α is an indication of lack of
evidence for sets of X and Y to be samples of different dis-
tributions. α is called the significance level and is commonly
set as 0.05.

3) Extreme Value Theorem: EVT [12] has been adopted
for modeling extreme events in weather and financial systems.
The theorem states that: For Mn = max(X1, . . . , Xn), where
(X1, X2, . . . ) are a sequence of i.i.d. samples drawn from any
distribution, if there exist a sequence of constants {an > 0}
and {bn} such that:

lim
n→∞

P

(
Mn − bn

an
≤ x

)
= G (x) (11)

and G is a non-degenerate function, then G must belong to
one of the following distribution families: Gumbel, Fréchet
and Weibull.

The distribution G belongs to Weibull family if the distri-
bution has limited tails. Given the residuals are bounded, in
our proposed method, extreme values of observations X of
reference distribution is characterized by a three parameter
Weibull distribution. The shape k, location γ and scale λ
parameters of the Weibull distribution are estimated by the
Maximum Likelihood method. Extreme values from observa-
tions Y of test distribution are used to check the likelihood of
two motions being similar by using the reference cumulative
distribution in 12 as likelihood function. To combine motions,
we compare the median likelihood of the extreme values of Y
with a predefined threshold.

L (x | k, γ, λ) = 1− e−(
x−γ
λ )

k

(12)

Figure (3) shows how each of the three mentioned test
statistics differentiates between reference normal distribution
N (µ, σ2) with µ = 0 and σ = 1 and test normal distribution
with µ = 3 and σ = 2. In this example and for the sake of
simplicity, Gaussian distributions are used but residuals usually
form χ2 like distributions, which will be discussed in Section
IV-A.
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Algorithm 2 Using the three test statistics.
Input: Reference set Ei, Test set Ej , Method to be used.
Output: f = True if sets follow same model.
function Fuse(Ei, Ej ,Method)

if Method = EV T then
Exti ← Max of l random samples from Ei for p times.
k, λ, γ ← Estimate Weibull parameters with Exti.
Extj ← Max of l random samples Ej for p times.
Calculate likelihood Lj of median of Extj using (12).
if average(Lj) < Threshold then

f = True
end if

end if
if Method = Kolmogorov Smirnov test then

Calculate empirical c.d.f FX (t) from Ei using (5).
Calculate empirical c.d.f FY (t) from Ej using (5).
Calculate distance function DX,Y using (7).
if DX,Y ≤ tα then

f = True
end if

end if
if Method =Wilcoxon signed rank test then

Calculate p and W from Ei and Ej using (8,9 and 10).
if p ≥ α then

f = True
end if

end if
end function

Given the initial motion models Fin, we execute algorithm
(1) to obtain the combined motion models Fout. In the above
algorithm, statistical model fusion is used to check if two
models (or masks) belong to the same motion. It they are from
the same motion, we update the segmentation by joining their
object mask proposals to get the fused object mask. Then, for
the fused object mask, the motion model is re-estimated using
the procedure given in Section III-C. (use the fused masks
instead of the object-based mask proposals).

IV. EXPERIMENTAL RESULTS

In the first part, we conducted a comparative study on
a synthetic dataset to test the performance of the proposed
model fusion using three different test statistics and identified
their relative advantages. We performed an ablation study
on real data (TUM-RGBD benchmark [56]) to demonstrate
advantages of including the model fusion part to existing
object instance segmentation methods for dynamic object
removal in SLAM.

To show that our method performs accurate segmentation
for small or slow moving objects, we applied our method to
Multibody Motion Segmentation dataset [57] containing small,
medium and large size objects and compared our results with
existing methods. We also show comparative results for all
sequences of the SBM-RGBD dataset [58] as those involve
multiple moving objects.

We perform all experiments on a PC with intel corei7-
7600U CPU with 2.80GHz and 16GB RAM. The average

computation time of each segment of the proposed method
is as follows: object mask proposal generation takes 273
ms/frame, the selective sampling / data association steps take
269 ms/frame, the robust model estimation takes 457 ms/frame
and model fusion takes 28 ms/frame. On top of the above
our algorithm takes segmentations from Mask-RCNN (300
ms/frame) and optic flow as inputs (deep learning based
Flownet2 [59] takes around 7 ms/frame where as traditional
methods like [51] takes 70 s/frame).

A. Comparing model fusion methods : Synthetic dataset

We generated numerous sets of observations by sampling
from a χ2 distribution with known parameters. The first sample
is considered as reference χ2 distribution. The second set
also has the same parameters of the reference set but has
different number of observations. As shown in Figure (4), the
third set was generated by varying only one of the sample
mean, variance or degrees of freedom. The second set was
then used to test similarity and the third one was used to
test dissimilarity. The median values of the F-Scores of these
experiments are reported in Table (I) for 1000 iterations of the
experiment.

1) Case1: Variation of sample mean: The performance of
three tests for varying differences in sample means of test and
reference distributions were examined. Even small differences
between sample means can be detected by the Wilcoxon signed
rank test as this test is an extension of student t-test and
concentrates more on the central tendency (while the other
two tests concentrate on the shape).

2) Case2: Variation of sample variance: Some distributions
can have the same central tendency while they have different
spreads. So, an ideal method needs to be sensitive to the
changes in sample variance. WSR-Test is not effective for
detecting the change of variance as it concentrates on changes
in sample means. The KS and EVT tests however are sensitive
to such changes.

3) Case3: Variation of shape: Some distributions can have
the same medians, suggesting the same central tendency, but
differ in the shape of their left and right tails. This particularly
happens if the spread of the distributions is not symmetric.
WSR-Test is again not effective for this, while the KS-Test
performs reasonably well. EVT overall is more sensitive to
shape changes as it is based on modelling of extreme events
that are samples from tails of distributions.

The results of our simulations are shown in table I. These
results show that the WSR-Test is more sensitive to changes in
sample mean,while the KS-Test is more sensitive to changes
in sample variance and the EVT-Test is more sensitive to
changes in the tails of distributions. The EVT-Test requires
less computation time. The results show that the WSR-Test is
not robust if the tested distributions only differ in the variance
or tails. As this test needs paired observations, the number
of samples as well as the presence of zero difference or
tied absolute differences affect its performance. Existence of
outliers can affect the EVT-Test and its implementation needs
a pre-processing step to eliminate noisy observations. It is also
affected by the sample size as low sample size leads to more
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(a) (b) (c)

Fig. 4: Visualization of two χ2 distributions with different sample mean, variance and degree of freedom (three cases of the
ablation study).

uncertainty in the estimation of the Weibull parameters. The
KS-Test is a more general statistic for comparing any type of
difference in the two distributions while it is less discerning
than the WSR-Test for finding central tendency shift and the
EVT-Test for finding tail changes. Overall, as there is no clear
winner, one can use either of the KS-Test or EVT-Test to
perform the statistical inference task.

TABLE I: F-Score accuracy for change in Sample
Mean,Variance and shape

Variation Values F-Measure
Extreme

Value
Theorem

Kolmogorov
Smirnov test

Wilcoxon
signed rank

test

Mean

3.00 0.9796 0.9848 0.9899
1.00 0.9796 0.9744 0.9724
0.30 0.6712 0.9118 0.9146
0.10 0.6622 0.6458 0.6667

SD

2.00 0.9848 0.9896 0.3877
1.75 0.9744 0.9796 0.4039
1.50 0.9637 0.9899 0.3729
1.25 0.9474 0.9950 0.4258

Degrees 2 0.9148 0.9637 0.6644

of freedom 3 0.9899 0.9691 0.6875
4 0.9796 0.9583 0.7589

B. Ablation study: Real dataset -TUM-RGBD dynamic SLAM

To examine the significance of the proposed statistical
model fusion step, we performed an ablation study and
measured the improvement of our dynamic SLAM system
on the TUM walking-xyz sequence with and without the
model fusion part. The improvements are measured by both
Absolute Trajectory Error (ATE), which is a measure of
global consistency, and Relative Pose Error (RPE), which is
a measure of translational and rotational trajectory drift errors
of estimated camera pose.

We use the open-source DVO SLAM 1 for Camera Trajec-
tory Estimation. It is a dense vSLAM method for RGB-D data
that minimizes both photometric and depth loss. In addition,
DVO-SLAM adaptively selects keyframes and uses them for
loop closure. In our implementation we extract the background
segmentation (Section III-D) and directly feed it to the DVO
SLAM algorithm.

The performance was measured using root mean squared
errors (RMSE) of both Absolute Trajectory Error (ATE) and

1https://vision.in.tum.de/data/software/dvo

Relative Pose Error (RPE). The above measures are calculated
as follows [56]: For a given camera pose sequence P1:n (esti-
mated trajectory) and Q1:n (ground truth trajectory) ∈ SE(3),
the Relative Pose Error (Ei) and Absolute Trajectory Error
(Fi) are represented as:

Ei = (Qi
−1Qi+δ)

−1
(Pi
−1Pi+δ) (13)

Fi = Qi
−1SPi (14)

where S is the transformation to align both trajectories and δ
is the interval time.

Table II demonstrates the quantitative results. The first col-
umn shows errors for the original DVO SLAM [46] algorithm
designed for static environments. The second column shows
errors of our method without the model fusion part. This is
obtained by removing all detected objects and integrating only
the background to the front-end of the DVO SLAM.

The next three columns show the errors after the inclusion
of the model fusion part, using the above three tests for
joining static objects with the background. This leads to
richer backgrounds containing more featured regions, which
improves the camera ego-motion estimation. The improvement
is calculated as:

I =

(
1− wEV T + wKS + wWSR

3× w0

)
× 100% (15)

where I represents improvement value, ((wEV T + wKS +
wWSR)/3) and w0 represent error values with and without
model fusion part. Figure (5) shows ATE and RPE plots with
and without model fusion part. The figure shows significant
improvement in ego-motion estimation when using the statisti-
cal model fusion and including static objects in its calculation.

The performance of the proposed method is also compared
with several related state-of-the-art approaches in Table III
including: (1) Co-Fusion (CoF [37]) models and tracks mul-
tiple objects using motion cues and improving them over
time through fusion in dynamic scenes. (2) BaMVO [47] that
builds background model from depth data to reduce influence
of dynamic objects. (3) Mask-Fusion (MF [9]) extends Co-
Fusion [37] by using semantic information from Mask-RCNN
[8] to track individual objects. (4) Motion removal DVO
SLAM (MrDVO [60]) that builds and incrementally updates a
foreground model and infers a pixel-wisely dense likelihood
of being the foreground.

Although table III shows that the MrDVO [60] often pro-
duces lower errors, our method also performs segmentation
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TABLE II: RMSE of Absolute Trajectory Error (ATE) in m, Translational Drift (RPE) in m/s and Rotational Drift (RPE) in
°/s without and with model fusion module of our approach.

Errors DVO [46] DVO + Ours DVO + Ours with Model-Fusion Improvement
without

Model-Fusion
Extreme Value

Theorem
Kolmogorov
Smirnov test

Wilcoxon
signed rank

test

due to Model-
Fusion(%)

ATE (m) 0.5966 0.1768 0.1383 0.0942 0.1037 36.65
Translational RPE (m/s) 0.4360 0.1805 0.1209 0.1211 0.1364 30.12
Rotational RPE (°/s) 7.6669 3.4638 3.1405 2.6521 3.0393 15.01

Fig. 5: ATE (top) and RPE (bottom) for fr3/walking-xyz from a) DVO SLAM, b) DVO + our method without model-fusion,
DVO + our method with c) EVT model-fusion d) KS model-fusion and e) WSR model-fusion

TABLE III: RMSE of Translational Drift (RPE) in m/s and Rotational Drift (RPE) in °/s for dynamic sequences in TUM
RGBD-Dataset.

Dataset
Translational RMSE (m/s) Rotational RMSE (°/s)

CoF BaMVO MF MrDVO Ours CoF BaMVO MF MrDVO Ours
[37] [47] [9] [60] [37] [47] [9] [60]

fr3/sitting-stat 0.0110 0.0248 0.0170 - 0.0131 0.4400 0.6997 0.4300 - 0.3458
fr3/sitting-xyz 0.0270 0.0482 0.0460 0.0357 0.0393 1.0000 1.3885 1.2500 1.0362 1.0111
fr3/sitting-rpy - 0.1872 - - 0.0856 - 5.9834 - - 2.5162
fr3/sitting-hs 0.0300 0.0589 0.0410 0.0547 0.0482 1.9200 2.8804 2.0700 2.2677 2.4978
fr3/walking-stat 0.2240 0.1339 0.0390 0.0307 0.0717 4.0100 2.0833 0.0760 0.8998 1.3333
fr3/walking-xyz 0.3290 0.2326 0.0970 0.0668 0.1209 5.5500 4.3911 2.0000 1.5950 3.1405
fr3/walking-rpy - 0.3584 - 0.0968 0.1734 - 6.3398 - 2.5936 3.2944
fr3/walking-hs 0.4000 0.1738 0.0930 0.0611 0.1953 13.020 4.2863 3.3500 1.9004 4.9336

and tracking of each dynamic object in addition to ego-motion
estimation similar to CoF [37] and MF [9]. Table III also
shows that our method is accurate than CoF [37] and MF
[9] in low dynamic sitting sequences due to inclusion of
static objects with background using statistical inference. The
assumption in MF [9] to treat all objects not being touched
by a human as static object does not hold in real word
applications.

C. Multibody motion segmentation dataset

We use our method to perform motion segmentation on three
RGB-D video sequences from [57]. Each sequence consists
of two rigid objects and non-rigid human hand moving small
(cereal box and teacup), medium (watering can and box) and
large (chairs) size objects. Partial ground truth is provided
every five seconds. For comparison, we provide segmentation

accuracy from [57] and [61] along with our results in table
IV. The method presented in [61] works for small camera
motions and as such, results are only reported for part of
sequences (excluding frames with large camera motions) while
the other competing method [57] works only for rigid objects
and annotates ground truth of non-rigid motions by ”dont-
care” labels.

Using high-level information results has two advantages.
First, our method improves the segmentation of small size
objects by sampling selectively within an untextured and
noisy background. Segmentation accuracy of large size objects
(chairs) is also improved as using high-level information
overcomes the noisy low-level motion information due to the
rotationally repetitive arrangement of chairs’ feet.

Fig (6) shows qualitative results for segmenting small,
medium and large objects. Middle row shows failure of Mask-
RCNN to detect the box on the table. As our proposed method
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(a) (b) (c) (d) 

Fig. 6: Segmentation results for Small, Medium and Large object sequences. Column (a) Sample image. (b) Its ground truth
segmentation. (c) Mask-RCNN object segmentation result. (d) Motion segmentation output of our method.

uses motion cues to create virtual mask, it can overcome this
issue and the box is properly segmented. In the first two rows,
the table, which is segmented by the Mask-RCNN, covers most
of the scene and if it is removed, the background would not
have much texture or structure for camera pose estimation.
Again, our proposed method has been able to fuse the table
with the background (no object area) and produced highly
accurate segmentation.

TABLE IV: Segmentation accuracy for Small,Medium and
Large object sequences

Size Object
Segmentation Accuracy

From [61] From [57] Our Method

Small
Cup 0.9119

0.9500
0.9708

Cerial Box 0.8719 0.9754

Medium
Watering can 0.9494

0.9400
0.9857

Box 0.8469 0.9876

Large
Right Chair 0.7420

0.6300
0.9828

Left Chair 0.7761 0.9618

D. SBM-RGBD dataset

SBM-RGBD dataset [58] includes 33 RGB-D videos ac-
quired by the Kinect. There are 7 categories of videos
for handling different challenges like Illumination Changes,
Color Camouflage, Depth Camouflage, Intermittent Motion,
Out of Sensor Range, Shadows and Bootstrapping. We use

5 sequences in the Out of sensor Range as it is the only
category that contain multiple moving objects. It should be
noted that the above dataset is aimed at evaluating background
segmentation methods and the camera is kept static in all
the sequences in SBM-RGBD dataset. Performance metrics
reported for background segmentation are obtained by submit-
ting the output segmentation from our method to the SBM-
RGBD Challenge. The ground truth for motion segmentation
were generated by manually annotating the random frames
in each sequence for with the background segmentation’s are
available publicly (1080 frames out of 15000 frames in the test
sequences). The performance of the proposed method is com-
pared with several related state-of-the-art approaches (we have
selected the top three methods in the SBM-RGBD challenge)
including: (1) SCAD [63] that uses background subtraction
based on both color and depth and combines them using graph
cuts. (2) MFCN [62] that uses deep features learned from a
multi-scale fully convolutional network to classify foreground
and background. (3) RGBD-SOBS [64] that builds two neural
background models using color and depth information and
combines both outputs to segment the background. The first
three methods can only provide background/foreground seg-
mentation and work only in the presence of a static camera.
Co-fusion and our method can both handle moving cameras in
dynamic scenes. Table V compares the methods using average
Precision, Recall and F-measures. The first three columns
report the foreground/background segmentation metrics. The
best results are obtained by [62]. This method uses a CNN

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TIP.2020.2984893

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



12

TABLE V: Foreground/Background Segmentation and motion segmentation F-Scores for the five sequences in Out of sensor
Range category of SBM-RGBD dataset.

Method Foreground/Background
Segmentation

Motion Segmentation

Recall Precision F-Score Recall Precision F-Score IoU
MFCN [62] 0.9917 0.9613 0.9763 - - - -
SCAD [63] 0.9286 0.9357 0.9309 - - - -
RGBD SOBS [64] 0.9170 0.9362 0.9250 - - - -
Co-Fusion [37] - - - 0.4774 0.4945 0.4694 0.4213
Our Method 0.9420 0.9137 0.9264 0.8587 0.6842 0.7418 0.7572

based model to learn the background and uses that in the
subsequent steps, therefore limiting it to static cameras. The
other two top performing methods and our method show
comparable accuracy. The next three columns show motion
segmentation accuracy for our method and co-Fusion (Results
generated by running the publicly available code2 with the
default parameters). The results show that our method has
out-performed Co-Fusion in this dataset. This may be because
SBM-RGBD dataset contains objects with both large and small
motions (humans walking slowly and running).

Figure (7) shows qualitative results for foreground back-
ground and motion segmentation of our method along with
ground truths for a random time frame in sequences: Multi-
People1, MultiPeople2 and TopViewLab3.

V. CONCLUSION

This paper proposes to use both high-level semantic infor-
mation and low-level object specific motion cues, for perform-
ing motion segmentation of RGB-D data in complex dynamic
scenes. The benefit of using instance object segmentation,
along with motion cues, is to find small or slow moving
objects among noisy background camera motion. Another
benefit is the ability to overcome the problem of segmenting
or tracking undetected moving objects (failures in object
detection). Instead of finding seperate motions for each object,
we use an innovative statistical inference method to combine
static objects with the background and improve the accuracy
of the camera pose estimation. Our method characterises each
motion by a distribution using residual errors of object seg-
mentation with respect to its motion models. Two motions with
similar distributions are then fused using a statistical inference
method. Experiments on synthetic data showed that KS-Test or
EVT-Test are sensitive to changes in mean, variance or shape
of two compared distributions while experiments on TUM-
RGBD Dynamic SLAM dataset showed improvement in the
accuracy of SLAM due to inclusion of the above model fusion
part.

A limitation of our method is that it ceases to track moving
objects that remain stationary for a few frames. This is be-
cause our method only uses information from two consecutive
frames and does not use any long-term information. In the
future work, we will explore the use of tracking based temporal
consistency to address this issue.

2https://github.com/martinruenz/co-fusion
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