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Effective Sampling: Fast Segmentation Using
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Abstract—Identifying the underlying models in a set of data
points that is contaminated by noise and outliers leads to a
highly complex multi-model fitting problem. This problem can
be posed as a clustering problem by the projection of higher-
order affinities between data points into a graph, which can
be clustered using spectral clustering. Calculating all possible
higher-order affinities is computationally expensive. Hence, in
most cases, only a subset is used. In this paper, we propose
an effective sampling method for obtaining a highly accurate
approximation of the full graph, which is required to solve
multi-structural model fitting problems in computer vision. The
proposed method is based on the observation that the usefulness
of a graph for segmentation improves as the distribution of
the hypotheses that are used to build the graph approaches
the distribution of the actual parameters for the given data. In
this paper, we approximate this actual parameter distribution by
using a kth-order statistics-based cost function, and the samples
are generated using a greedy algorithm that is coupled with
a data sub-sampling strategy. The experimental analysis shows
that the proposed method is both accurate and computationally
efficient compared to the state-of-the-art robust multi-model
fitting techniques. The implementation of the method is publicly
available from https://github.com/RuwanT/model-fitting-cbs.

Index Terms—Model-fitting, Spectral clustering, Data segmen-
tation, motion segmentation, Hyper-graph

I. INTRODUCTION

The robust fitting of geometric models to data that are
contaminated with both noise and outliers is a well-studied
problem with many applications in computer vision [1]–[4].
Visual data often contain multiple underlying structures, and
there are both pseudo-outliers (measurements that represent
structures other than the structure of interest [5]) and gross
outliers (which are produced by errors in the data generation
process). Fitting models to this combination of data involves
solving a highly complex multi-model fitting problem. This
multi-model fitting problem can be viewed as a combination
of two sub-problems: data labelling and model estimation.
Although solving one of the sub-problems when the solution
to the other is given is straightforward, solving both problems
simultaneously remains challenging.

Traditional approaches to multi-model fitting were based
on the fit-and-remove strategy: apply a high-breakdown robust
estimator (e.g., RANSAC [1] or a least k-th-order residual) to
generate a model estimate and remove its inliers to prevent
the estimator from converging to the same structure again.
This approach is not optimal because any errors made in the
initial stages tend to make the subsequent steps unreliable (e.g.,
small structures can be absorbed by models that are created
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by accidental alignment of outliers with several structures) [6].
To address this issue, two types of solutions are proposed. The
first group is based on using energy minimization techniques
in which a cost function consisting of a combination of data
fidelity and model complexity (number of model instances)
terms is optimized. The second approach is to use clustering
methods on the parameters of putative solutions for the whole
problem. These two approaches are explained here.

In the energy minimization approach, a cost function in
terms of a compromise between the goodness and parsimony
of the solution [7] is optimized to simultaneously recover the
number of structures and their data association. Commonly,
such cost functions are optimized using discrete optimization
methods (metric labeling [2]). They start from a large number
of proposed hypotheses and gradually converge to the true
models. The outcome of those methods depends on the balance
between the terms in the cost function (controlled by an input
parameter) and the quality of the initial hypotheses. Sensitivity
to the parameters included in the sum of terms with different
dimensions is also an issue associated with the application of
several other subspace learning and clustering methods. For
instance, Robust-PCA [8] splits the data matrix into a low-
rank matrix and a sparse error matrix. The aim is to minimize
the cost function (which is a norm of the error matrix) while
it is regularized by the rank of the representation matrix. In
factorization methods such as [9], the low-rank representation
is obtained by learning a dictionary and coefficients for each
data point. The effect of regularization is included using
a parameter. These parameters often depend on the noise
scales, the complexity of structures and even the number of
underlying structures and their data points. As such, these
variables vary among datasets, which limits the application
of these methods.

Another approach to multi-model fitting is to pose the
problem as a clustering problem [10] [11]. In this approach,
the idea is that a pure sample (members of the same structure)
of the observed data from a cluster can be represented by a
linear combination of other data points from the same cluster.
Then, the relations of all points to each sampled subset can
encode the relations among data points. For example, Sparse
Subspace Clustering (SSC) [3] tries to find a sparse block-
diagonal matrix that relates data points in each cluster. The
optimization task in this work is to minimize the error and
the L1-norm of this latent sparse matrix. In contrast, the
regularization term in LRR [12] uses the nuclear norm of this
sparse matrix. Recently, [13] presented a deterministic analysis
of LRR and suggested that the regularization parameter can
be estimated based on the number of data points. Although
this improves the speed and accuracy of those methods, it
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remains unclear what would happen when the number of
data points is very large (similar to the databases studied
in this work). We should note that methods such as LRSR
[14] and CLUSTEN [15], which have more constraints for
the regularization and, therefore, more parameters, have also
been proposed. A similar strategy is also used to solve the
problem of Global Dimension Minimization in [16], which
is used to estimate the fundamental matrix for the problem of
two-view motion segmentation. The method is somewhat more
accurate than LRR and SSC but is computationally expensive.
The abovementioned clustering-based methods generally adopt
different norms for describing noise, which is equivalent to
assuming that the data are corrupted by specific types of noise.
In [17], the authors used a mixture of Gaussians to model noise
that is more complex. In this approach, the search is initialized
with a few Gaussians and the parameters of the mixture are
obtained through Expectation-Maximization steps. When the
number of Gaussians is too low, the noise cannot be charac-
terized properly and structures may be missed. Increasing the
number of Gaussians is computationally expensive for the EM
part.

A widely used clustering method is Spectral Clustering [18].
Spectral clustering, which is based on eigen-analysis of a
pairwise similarity graph, finds a partitioning of the similarity
graph such that the data points in different clusters have very
low similarities and the data points within a cluster have high
similarities. A simple measure of similarity between a pair
of points that lie on a vector field is the Euclidean distance.
However, measures that are based on only two points will
not work when the problem is to identify data points that
are explained by a known structure with multiple degrees of
freedom. For instance, in a 2D line fitting problem, any two
points will perfectly fit a line, regardless of their underlying
structure. Hence, a similarity cannot be derived by using only
two points. In such cases, an effective similarity measure can
be devised using higher-order affinities (for example, in the
2D line fitting problem, the least-square error among three or
more points will provide a suitable affinity measure [10]).

There are several methods for representing higher-order
affinities using either a hyper-graph or a higher-order tensor.
Since spectral clustering cannot be applied directly to those
higher-order representations, they are commonly projected to
a graph (which is discussed further in Section II). Moreover,
the number of elements in a higher-order affinity tensor (or
number of edges in a hyper-graph) will increase exponentially
with the order of the affinities (h), which is directly related to
the complexity of the model (p). Hence, for complex models,
it would not be computationally feasible (in terms of memory
utilization or computation time) to generate the full affinity
tensor (or hyper-graph), even for a moderately sized dataset.
The most commonly used method for overcoming this problem
is to use a sampled version of the full tensor (or hyper-graph)
that is obtained by using random sampling [11], [10]. The
information content of the projected graph heavily depends
on the quality of the samples that are used [19], [20], [21]
and we analyze this behavior in Section II.

In this paper, we propose an efficient sampling method,
called cost-based sampling (CBS), for obtaining a highly

accurate approximation of the full graph that is required
to solve multi-structural model fitting problems in computer
vision. The proposed method is based on the observation that
the usefulness of a graph for segmentation improves as the
distribution of hypotheses (used to build the graph) approaches
the actual parameter distribution for the given data.

This basic approach can be implemented with different
choices of cost functions and optimization methods. The
choice of optimization method mostly determines the speed
and the choice of cost function affects the accuracy. For
example, LBF [22] attempts to improve the generated samples
of the cost function (chosen to be the β-number of the residuals
of a model) by guiding the samples and increasing their
size. Its optimization method is slower than our proposed
method and the chosen cost function is very steep around
the structures, which makes the initialization of the method
very difficult and can lead to missing structures. The recipe
for overcoming these shortcomings is based on using an extra
constraint, such as spatial contiguity, to ensure the purity of
the samples before increasing their sizes. In this paper, we
approximate this actual parameter distribution using the kth-
order cost function, which, in turn, enables us to generate
samples using a greedy algorithm that incorporates a faster
optimization method. The advantage of the proposed method
is that it only uses information in the data with respect
to a putative model and does not require any additional
assumptions such as spatial smoothness.

The rest of this paper is organized as follows: Section II dis-
cusses the use of clustering techniques for robust model fitting
and the need for better sampling methods. Section III describes
the proposed method in detail and Section IV presents the
results of experiments on real data and comparisons with
state-of-the-art model-fitting techniques. Additional discussion
regarding the merits and shortcomings of the method is pre-
sented in Section V, followed by a conclusion in Section VI.

II. BACKGROUND

Consider the problem of clustering data points X =
[xi]

N
i=1 ; xi ∈ Rd, assuming that there are underlying models

(structures) Θ =
[
θ(j)
]m
j=1

; θ(j) ∈ Rp that relate some of
those points. Here, N is the number of data points, and m
is the number of structures in the dataset, with the zeroth
structure assigned for outliers. Clustering a dataset in such
a way that elements of the same group have higher similarity
than elements in different groups is a well-studied problem
with attractive solutions such as spectral clustering. Spectral
clustering operates on a pairwise undirected graph with an
affinity matrix, which is denoted as A, that contains affinities
between pairs of points in the dataset. As explained earlier,
for model fitting applications, only higher-than-pairwise-order
affinities provide a useful similarity measure and spectral
clustering cannot be directly applied to higher-order affinities.

Agrawal et al. [10] introduced an algorithm in which the
higher-order affinities (in multi-structural multi-model fitting
problems) were represented as a hyper-graph. They proposed
a two-step approach for partitioning a hyper-graph with h =
p+ 1 (p is the number of parameters of the model) affinities.
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In the first step, the hyper-graph was approximated with a
weighted graph using the clique averaging technique. Then,
the resulting graph was segmented using spectral clustering.
Constructing a hyper-graph with all possible p + 1 edges is
very expensive. As such, they used a sampled version of the
hyper-graph that was constructed by random sampling.

Govindu [11] posed the same problem in a tensor-theoretic
approach in which the higher-order affinities were represented
as an h-dimensional tensor, which was denoted as P . Using
the relationship between the higher-order SVD (HOSVD) of
the h-mode representation and the eigenvalue decomposition,
[11] showed that the super-symmetric tensor P (in which the
similarity does not depend on the ordering of points in the h-
tuple) can be decomposed into a pairwise affinity matrix using
A = PP>. Here, P is the flattened matrix representation1 of
P along any dimension. The size of the matrix P is still very
large. For example, the size of P for a similarity tensor that
is constructed using h-tuples from a dataset that contains N
data points is N ×Nh−1. As with the hyper-graphs, to make
the computation tractable, Govindu [11] suggested using a
sampled version of the flattened matrix (H ≈ P). Each column
of H was obtained using the residuals of a model (θ) that was
estimated using h − 1 randomly selected data points. In the
remainder of the text, we adopt this tensor-theoretic approach.

The sampling strategy used to construct the sample matrix
H critically affects the clustering and, thus, the overall perfor-
mance of the model fitting solution.

A. Why is the distribution of samples important?

In the tensor-theoretic approach, pairwise affinity matrix A
is constructed by multiplying the matrix H with its transpose,
where hi,l = e−r

2
θl

(i)/2σ2

, r2
θl

(i) is the squared residual of
point i for model θl (obtained by fitting to a tuple τl) and σ
is a normalization constant.

A[N×N ] = HH> =

nH∑
l=1

[
H(l)H(l)>

]
︸ ︷︷ ︸

A(l)

[N×N]

(1)

where H(l) is the lth column of H, which corresponds to the
hypothesis θl; A(l) is the contribution of hypothesis θl to the
overall affinity matrix (A); and nH is the total number of
hypotheses.

When a model hypothesis θl is close to an underlying
structure in the data (Hypothesis A in Figure 1a), the inlier
points of that structure have relatively small residuals, and the
resulting A(l) (Figure 1b) has high affinity values between the
inliers and low affinity values for all other point pairs (outlier-
outlier and outlier-inlier). In contrast, when a model hypothesis
θl is far (in parameter space) from any underlying structure,
the presumption is that the resulting residual is large, thus
leading to A(l) ≈ 0[N×N ]. However, as shown in Figure 1a (for
Hypothesis B), this is not always the case in model fitting. It is
highly likely that some data points yield small residuals even

1The flattened matrix (Pd) along dimension d is a matrix in which each
column is obtained by varying the index along dimension d while holding all
other dimensions fixed.
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Fig. 1. Example line fitting scenario on a synthetic dataset containing two
lines and multiple outliers. Lines A and B show two model hypotheses, and
the shaded areas around the lines indicate the corresponding σ values. (b) and
(c) show the contributions of hypotheses A and B, respectively, to the overall
graph. The data points are sorted according to their model affiliation, where
the first 50 data points belong to line one followed by line two (50 points)
and the outliers (20 points). The dashed lines indicate the cluster boundaries.

for such hypotheses (far from any underlying model), thus
leading to high hi,l values. The resulting A(l) (Figure 1c) has
high affinities between unrelated points that can be viewed as
noise in the overall graph. The effect of these bad hypotheses
can be amplified because the normalization factor, σ, is often
overestimated (using robust statistical methods) when the
hypothesis θl is far (in parameter space) from any underlying
structure. It is important to note that if none of the hypotheses
(used in constructing the graph) are close to an underlying
structure, then the overall graph does not have higher affinities
between the data points in that structure and the clustering
methods will not be able to segment that structure.

The above example shows that the sampling process influ-
ences the level of noise in the graph. While spectral clustering
can tolerate some level of noise, it has been proved that this
noise level is related to the size of the smallest cluster that we
want to recover (the tolerable noise level increases rapidly
with the size of the smallest cluster) [23]. Because model
fitting often involves recovering small structures, it is highly
important to limit the noise level in the affinity matrix.

For any two data points xi, xj , we can write

ai,j =
1

nH

nH∑
l=1

e−
(r2θl (i)+r

2
θl

(j))
2σ2︸ ︷︷ ︸

a
(θl)

i,j

as−−−→
nH↑

∫
Pθ · a(θl)

i,j dθ (2)

For any model fitting problem with p > 2, there exist an
infinite number of models θl, where a(θl)

i,j → 1. This implies
that for any two points, ai,j (according to Equation 2) can be
maximized or minimized by choosing Pθ accordingly.

For a graph to have a block diagonal structure that is suitable
for clustering, ai,j must be large if both data points xi and
xj are from the same structure θt and small otherwise. If
hypotheses are selected from a Gaussian mixture distribution
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with sharp peaks around the underlying model parameters,
with low density in other places, and with θt representing the
true underlying structures, then we have

Pθ =
m∑
t=1

φt N (θt,Σt). (3)

The edge weights approach the following values when Σt →
0:

ai,j →
{
φt i ∧ j ∈ θt
0 i ∧ j /∈ θt

(4)

A results in a graph that has a block diagonal structure that is
suitable for clustering. However, generating sample hypotheses
from this distribution is not possible because it is unknown
until the problem has been solved.

This point is further illustrated by a simple model fitting
experiment that employs a synthetic dataset that contains four
lines. Each line contain 100 data points with additive Gaussian
noise N (0, 0.022) and 50 gross outliers were also added
to those lines. First, 500 hypotheses were generated using
uniform sampling, random sampling (using 5-tuples), and the
sampling scheme that was proposed in this paper (CBS).
Then, these hypotheses were used to generate the three graphs
that are shown in Figure 2. As the data are arranged based
on the structures’ membership, a properly constructed graph
should show a block diagonal structure with high similarities
between points in the same structure and low similarities for
data from different structures. The figure shows that while the
CBS method has resulted in a favorable graph for clustering,
the other two sampling strategies have produced graphs with
little information. The corresponding hypothesis distributions
(Figure 2 (e-f)) show that only CBS has generated many
hypotheses that are close to the underlying structure.

Govindu [11] used h − 1 (for affinities of order h) ran-
domly sampled data points and calculated a column of H by
computing the affinity between those and each point in the
dataset. The probability of obtaining a clean sample, which
leads to a hypothesis that is close to a true structure in the
data, decreases exponentially with the size of the tuple [10].
Hence, it becomes increasingly unlikely to obtain a good graph
for models with a large number of parameters using random
sampling.

There are several techniques in the literature that try to
tackle the clustering problem by tapping into available infor-
mation regarding the likelihood distribution of good hypothe-
ses. For instance, spectral curvature clustering [19], which is
an algorithm that was designed for affine subspace clustering,
employs an iterative sampling mechanism that increases the
chance of finding good hypotheses. In this scheme, a randomly
chosen H is used to build a graph, which is partitioned
using spectral clustering to generate an initial segmentation
of the dataset. Then, data points within each segment of this
clustering are used to generate a new set of columns of H. This
process is repeated several times to improve the final clustering
results. In such an iterative scheme, the errors that are made
in the initial random stage can bias the overall solution. In
contrast, our method does not rely on the previous iterations
of the graph in building H.

Similarly, Ochs and Brox [20] used higher-order affinities
in a hyper-graph setting for motion segmentation of video
sequences. In their method, the affinity matrix is obtained
using a sampling strategy that is partly random and partly
deterministic. The higher-order affinities are based on 3-tuples
that are generated by choosing two points randomly. Then, the
third points are chosen as a mixture of 12 nearest-neighbor
points and 30 random 3rd points.

The previous guided sampling approaches generate the
columns of H using tuples of minimal size. Purkait et al.
[21] advocated the use of larger tuples and showed that if
those tuples are selected correctly, the hypothesis distribution
will be closer to the true model parameters compared to
smaller tuples. However, selecting larger all-inlier (correct)
tuples using random sampling is highly unlikely. Purkait et al.
[21] suggested the use of Random Cluster Models (RCM) [24]
to improve the sampling efficiency. RCM is based on selecting
the tuples iteratively such that at every iteration, the samples
are selected using the segmentation results that are obtained by
enforcing the spatial smoothness on the results of the previous
iteration. This approach is particularly advantageous if the
application satisfies the spatial smoothness requirements. Our
proposed approach for constructing the affinity matrix without
relying on the existence of spatial smoothness is explained in
the next section.

III. PROPOSED METHOD

This section describes a new approach for multi-structural
model fitting problems. Similar to [10], [11], we approach
multi-structural fitting as a clustering problem with the in-
tention of applying spectral clustering. In this approach, the
pairwise affinity matrix A for spectral clustering is obtained by
projecting the higher-order affinity tensor (P) via multiplying
an approximated flattened matrix H with its transpose. For
affinities of order h, each column of H is obtained by sampling
h− 1 data points and calculating the affinity of each point to
those sampled points. The affinity of a data point i to an h−1

tuple is calculated as e−r
2
θl

(i)/(2σ2), where θl is the vector
of fitted model parameters to the h − 1 tuple and σ is the
normalization factor. For clarity, in the remainder of this text,
an h− 1 tuple (τl) that is used to generate a column of H is
referred to as an edge, while its corresponding model (θl) is
called a hypothesis.

As discussed in Section II, the way in which we sample the
edges affects the information content of the resulting graph
and our ultimate goal is to sample edges in such a way
that the distribution of their associated hypotheses resembles
the true distribution of the model parameters. While the
true distribution of the model parameters for a given dataset
p(θ | X) is unknown until the problem is solved, using Bayes’
theorem it can be written as follows:

p(θ|X) ∝ p(X|θ)p(θ) (5)

where p(X|θ) is the likelihood of observing data X under
the model θ and p(θ) is the prior distribution of θ. Given
that the prior is uninformative (i.e., any parameter vector is
equally likely), the posterior is largely determined by the data
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Fig. 2. A synthetic dataset containing four line structures is shown in (a), and the graphs produced by the cost-based sampling, random and uniform sampling
(-10,10) methods are shown in (b-d), respectively. The respective hypothesis distributions are shown in (e-f). While the CBS method has resulted in a favorable
graph for clustering, the other two sampling strategies have produced graphs with little information.

(the posterior is data-driven) and can be approximated by
p(θ|X) ∝ p(X|θ).

A robust objective function is often used in multi-structural
model fitting applications to quantify the likelihood of the
existence of a structure in the data [5]. On that basis, we argue
that it can be a good approximation of the model parameter
likelihood. For example, the sample consensus objective func-
tion, as employed in RANSAC, is expected to have a peak
in places where a true structure is present (in the parameter
space) and low values where there are no structures. It should
be noted that when there are structures of different size, the
sample consensus function associates higher values with larger
structures (hence, it is biased toward large structures). In
this work, we select the cost function of the least k-th-order
statistics (LkOS) estimator as the objective function, as it has
been shown to perform stably and with a high breakdown
point [25] in various applications and is not biased toward
large structures (LkOS is biased toward structures with low
variance, which is a desirable property). A modified version
of the LkOS cost function used in [26] is as follows:

C(θ) =
k∑

j=k−h+1

r2
i[j|θ](θ) (6)

where r2
i (θ) is the i-th sorted squared residual with respect

to model θ and i[j | θ] is the index of the j-th sorted
squared residual with respect to model θ. Here, k refers to the
minimum acceptable size of a structure in a given application,
and its value should be significantly larger than the dimension
of the parameter space (k � p). Because the above cost
function is designed to have minima around the underlying
structures, the model parameter likelihood function can be
expressed as

Pθ ∝ p(X|θ) ≈
1

Z
e−C(θ). (7)

The above function is highly non-linear, and its evaluation over
the entire parameter space, which is required for calculating
the normalizing constant Z, is not feasible. The most common
approach for sampling from a distribution that can only be
evaluated up to a proportional constant on specified points
is to use the Markov Chain Monte Carlo (MCMC) method
(e.g., by using Metropolis-Hasting algorithm). However, such
algorithms require a good update distribution to be effective,
and simple update distributions such as random walk would be
inefficient and may not traverse the full parameter space [27].
In particular, setting up random walk distributions requires
information regarding the span of the model parameters, which
is unknown until the problem is solved.

A. Sampling edges using the robust cost function

Using derivatives of the order statistics function in (6), a
greedy iterative sampling strategy was proposed in [26] that
is intentionally biased toward generating data samples from a
structure in the data. Then, this sampling strategy was used
to generate putative model hypotheses for tuples of different
sizes in conjunction with the fit-and-remove strategy to recover
multiple structures in the data [28], [26]. Because the fit-and-
remove strategy is susceptible to errors in the initial stages,
the sampling had to be reinitialized (randomly) several times
to reduce the probability of error propagation in the sequential
fit-and-remove stages.

In this paper, we propose a modified version of this iterative
update procedure (recalled in Algorithm 1) to generate model
estimates (edges) that are close to the peaks of the true
parameter density function p(θ|X). Each edge that is used in
constructing the H matrix of the proposed method is obtained
as follows: Initially, an h-tuple (h = p + 2) is selected
according to the inclusion weights w (as explained later).
Using this tuple as the starting point, the following update is
run until convergence. A model hypothesis is generated using
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the selected tuple and the residuals from each data point to this
hypothesis are calculated. Then, these residuals are sorted, and
the h points around the kth sorted index are selected as the
updated tuple for the next iteration.

In practice, the above update step has the following prop-
erty: If the current h-tuple is a clean sample (all inliers) from
a structure in the data, there is a high probability that the
next sample will also be from the same structure because
there should be at least k points that agree with each true
structure. In contrast, if the current hypothesis is not supported
by k points (not a structure in the data), the next hypothesis
will be at a distance in the parameter space from the current
hypothesis. At worst, this can be thought of as changing the
hypothesis randomly. However, it is shown that the residuals
of a data structure with respect to an arbitrary hypothesis
have a high probability of clustering together in the sorted
residual space [29], [4]. As the next h-tuple is selected from
the sorted residual space, the probability of selecting points
that are associated with a structure at this stage is higher than
that of selecting it randomly. The advantage of this approach
over the random and guided sampling methods is that those
methods do not converge locally and, hence, walk away from
a good hypothesis (continue sampling), even if a good sample
is found early. Since the proposed update converges locally,
it has the ability to stop quickly when a good hypothesis is
found.

Following [28], we use the following criterion to decide
whether the update procedure has converged to a structure in
the data:

Fstop =

r2
i[k|θl](θl) <

1

h

k∑
j=k−h+1

r2
i[j|θ(l−1)]

(θl)︸ ︷︷ ︸
(a)

∧
r2

i[k|θl](θl) <
1

h

k∑
j=k−h+1

r2
i[j|θ(l−2)]

(θl)︸ ︷︷ ︸
(b)

 .

(8)

Here, (a) and (b) are the squared residuals of the edge points in
iterations l−1 and l−2 with respect to the current parameters
θl. This criterion checks the data points that are associated
with the two previous samples to determine whether the
average residuals of those points (with respect to the current
parameters) are still lower than the inclusion threshold that is
associated with having k points (assuming that a structure has
at least k points implies that data points with residuals of less
than r2

i[k|θl](θl) are all inliers). This indicates that the samples
selected in the previous three iterations are likely to be from
the same structure; hence, the algorithm has converged.

B. Sub-sampling data

Although the above update procedure has a high probability
of generating an edge that results in a hypothesis that is close
to a peak in p(θ|X), there is no guarantee that all of the
structures in the data will be visited since the update step is
reinitialized from random locations. If some of the structures
are not visited by the sampling procedure, the resulting graph

Algorithm 1 Step-by-step algorithm of sample generation
(runCBS SG)

Inputs: Data Points (X ∈ [xi]
N
i=1), minimum cluster size (k),

T , inclusion weights (w)
Output: Final data indices Il, Scale σ

1: lmax ← 50, h← p+ 2, l← 0
2: Select an h-tuple (I0) from the data points according to

weights w.
3: Generate model hypothesis θ0 using the h-tuple I0.
4: repeat
5:

[
r2(θl), i[· | θl]

]
=SortedRes(X, θl).

6: Il+1 ← [xi[j|θl]]
k
j=k−h+1

7: θl+1 ← LeastSquareFit(Il+1)
8: Evaluate the stopping criterion (Fstop)
9: if Fstop then break end if

10: until (l++ > lmax)
11: σ ← MSSE(X, θl, k, T )

will not contain the information that is required to identify
those structures.

To ensure that the algorithm visits all structures in the data,
we propose using a data sub-sampling strategy. Each run of the
update procedure in Algorithm 1 is executed only on a subset
of the data that is selected based on an inclusion weight (w).
The inclusion weight, which is initialized to one, is designed
such that at every iteration, it will give higher importance to
data points that are not modeled by the hypothesis used in
the previous iterations. This will progressively increase the
chance of unmodeled data being included in the sampling
process. This idea is similar to the Bagging predictors [30]
with boosting [31], [32] in machine learning. In Bagging pre-
dictors multiple subsets of data, which are formed by bootstrap
replicates of the dataset, are used to estimate the models, which
are aggregated to obtain the final model. Boosting improves
the bagging process by giving importance to unclassified data
points in successive classifiers.

The complete edge generation procedure is as follows:
A subset of size Ns is sampled from the data using the
inclusion weights w without replacement (w is normalized in
the sampleData(·) function). Then, this sub-sample is used
in the update procedure in algorithm 1, which produces an
edge. Next, the inclusion weights w of the inliers to the above
hypothesis are decreased, while the inclusion weights of the
remaining points are increased. This process is repeated for a
fixed number of iterations. The complete steps of the proposed
method (CBS) are listed in Algorithm 2.

The scale of the noise plays a crucial role in the success
of segmentation methods. In spectral-clustering-based model
fitting methods, the scale is used to convert the residuals to
an affinity measure. While most competing algorithms require
this as an input parameter [21], [33], the proposed method
estimates the scale of the noise from the given data. In this
implementation, we selected the MSSE [34] for estimating the
scale of the noise. The MSSE algorithm requires a constant
threshold T as an input. This threshold defines the inclusion
percentage of inliers. Assuming a normal distribution for
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Algorithm 2 Step-by-step algorithm of the proposed model-
fitting method

Inputs: Data Points (X ∈ [xi]
N
i=1), minimum size of structure

(k), number of structures (nc), number of hypotheses
(nH ), T ← [2.0 ∼ 3.5]

1: w← [ 1
N . . . 1

N ]1×N ; Ns ← N/nc; w∗ ← 20
N

2: repeat
3: Sample Ns data points from X based on inclusion

weights w; [Xs,ws]← sampleData(X,w).
4: [Is, σ]← runCBS SG(Xs, k, T,ws)
5: Calculate residuals (r2

Is
) of all data points from the h-

tuple Is.
6: h:,i ← exp(−r2

Is
/2σ2

i )
7: Calculate inliers Cinl using rIs , σi.
8: w← w× 2
9: w(Cinl)← w(Cinl)÷ 4

10: w(w > w∗)← 1/N
11: w← w/sum(w)
12: until i++ > nH
13: A← HH>
14: [labels]← spectralClustering(A, nc)

noise, it is usually set to 2.5; i.e., T = 2.5 will include 99%
of the normally distributed inliers. Desirable properties of this
estimator for dealing with small structures were discussed in
[35].

IV. EXPERIMENTAL RESULTS

We have evaluated the performance of the proposed method
for multi-object motion segmentation on several well-known
datasets. Then, the results of the proposed cost-based sampling
(CBS) method were compared with those obtained using state-
of-the-art robust multi-model fitting methods. The selected
methods use higher-order affinities, namely, Spectral Curvature
Clustering (SCC [19], HOSC [21] and OB [20]), or are based
on energy minimization (RCMSA [33], PEARL [7] and QP-
MF [36]).

The accuracies of all methods were evaluated using the
commonly used clustering error (CE) measure [21]:

CE = min
Γ

∑N
i=1 δ

(
L∗(i) 6= LΓ

r (i)
)

N
× 100 (9)

where L∗(i) is the true label of point i, Lr(i) is the label
obtained via the method under evaluation and Γ is a permu-
tation of labels. The function δ(·) returns one when the input
condition is true and zero otherwise.

The proposed CBS algorithm was coded in MATLAB (the
code is publicly available: https://github.com/RuwanT/model-
fitting-cbs) and the results for competing methods were gener-
ated using the codes provided by the authors of those works.
The experiments were run on a Dell Precision M3800 laptop
with an Intel i7-4712HQ processor.

A. Analysis of the proposed method

In this section, we investigate the significance of each part
of the proposed algorithm and the effect of its parameters

on its accuracy. This analysis was conducted using a two-
view motion segmentation problem (see Section IV-B for more
details).

We used the “posters-checkerboard” sequence from the
RAS dataset [37] to evaluate the significance of the main
components of the CBS method. This sequence contains three
rigid moving objects with 100, 99, and 81 point matches
and 99 outlier points. In the first experiment, the matrix H
was generated with edges obtained by pure random sampling
(RDM); by the CBS method without the sub-sampling strategy,
i.e., with lines 3 and 8-11 removed from Algorithm 2 (CBS-
nSS); and by the complete proposed method (CBS). For each
sampling method, the number of hypotheses (nH ) was varied,
and the mean clustering error and run time were recorded
(averaged over 100 runs per value of nH ). Figure 3e shows
the variation of the mean clustering error with the sampling
time (computing time). The results show that for this problem,
accurate identification of models could not be achieved with
pure random sampling even when many edges were sampled.
It also shows that the sub-sampling strategy of the proposed
CBS method significantly contributes toward the accurate and
efficient identification of the underlying models in the data. In
addition, the inclusion of the sub-sampling step significantly
reduces the number of points that must be sorted (step 5
Algorithm 1), which is a bottleneck of the proposed method.
The time reduction in sampling 50 edges with CBS compared
to CBS-nSS, which is shown in Figure 3e, is mainly due to
the low number of sorted data points.

Next, we use the same image sequence to study the vari-
ations in accuracy of the proposed method with the value of
parameter k. This parameter defines the minimal acceptable
size for a structure (in terms of the number of points) in a
given application. Here, we vary the value of k from 10 to 80
(CBS use edges of size 10 and the smallest structure in this
sequence has only 81 points; hence, any value outside this
range is not realistic). The number of hypotheses was set to
100 for both sampling methods. The results that are plotted
in Figure 3f show that for CBS-nSS and CBS, the clustering
error decreases steeply up to approximately k = 20. In CBS-
nSS, the CE remains relatively unchanged after that, while in
CBS the clustering error starts to increase when k exceeds 40.
This behavior can be explained as follows: The CBS method
estimates the scale of the noise from the data and the analysis
of [35] showed that the estimation of the noise scale from
the data requires at least 20 data points to limit the effects
of finite-sample bias. As such, the CBS method does not have
high accuracy when k < 20. In addition, the data sub-sampling
in CBS reduces the number of points that are available for
each run of the sample generator. Hence, the clustering error
is increased for large k values. Using large values for k is also
not desirable because structures with smaller sizes would be
ignored.

Next, we used the same image sequence to show that the
proposed local update step (Algorithm 1) can converge to a
true structure in the data even when it is initialized with a
hypothesis that is far (in parameter space) from any structure.
Here, we repeated algorithm 1 10000 times, with each initial
h-tuple (in step 2 in Algorithm 1) being selected randomly
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from gross outliers that were derived using ground-truth labels.
The stopping criterion in Algorithm 1(steps 8 and 9) was
omitted in this evaluation. The mean and standard deviation
of the cost function value at each iteration across the 1000
random runs are shown in Figure 4. The results were compared
with those that were obtained by running the above experiment
with the initial h-tuple being selected randomly from true
structures. The results show that on average, the convergence
of the local update step does not depend on the initialization.

Next, we compared the proposed hypothesis generation pro-
cess against several well-known sampling methods for robust
model fitting (e.g., MultiGS [38] and Lo-RANSAC [39]).
These methods are designed to bias the sampling process
toward selecting points from a structure in the data. For
completeness, we have also included pure spatial sampling (to
generate a hypothesis using points that are closer in space
and selected via a KDtree) and random sampling. Similar
to the proposed method, the hypotheses from these sampling
methods were used to generate a graph, which is cut to perform
the clustering. Figure 3f shows that the CBS method is capable
of generating highly accurate clusterings faster than other
sampling methods.

While we have only presented the results for one two-view
motion segmentation case, similar trends were observed across
all other problems tested in this paper.

B. Two-view motion segmentation

Two-view motion segmentation is the task of identifying
the point correspondences of each object in two views of a
dynamic scene that contains multiple independently moving
objects. If the point matches between the two views are given
as [X1, X2], where Xi = (x, y, 1)> is a coordinate of a point
in view i, each motion can be modeled using the fundamental
matrix F ∈ R3×3 as [40]:

X>1 FX2 = 0 (10)

The distance from a given model to a point pair can be
measured using the Sampson distance [41].

We tested the performance of the CBS method on the
Adelaide-RMF dataset [42], which contains key-point matches
(obtained using SIFT) of dynamic scenes, together with the
ground-truth clustering. The clustering error and the computa-
tion time of the CBS method on each sequence, together with
those of the competing methods (PEARL, FLOSS, RCMSA
and QP-MF)2, are given in Table I. The results show that in
comparison to the competing methods, the proposed method
has achieved comparable or better accuracy over all sequences.
Moreover, on average, the computation time of the proposed
method is approximately 4 times less than that of QP-MF
and twice that of RCMSA when its computational bottlenecks
are implemented using C (MATLAB MEX), whereas our
method is implemented using a simple MATLAB script. One
expects implementation in the C language to yield significant
improvements in terms of speed.

2SSC and SCC are not used here as they are not robust to outliers (especially
when the percentage of outliers is not known).

In these experiments, the parameter k of the proposed
method was set to k = min(0.1 × N, 20). The number
of samples in QP-MF was set to 200 (determined through
trial and error; no significant improvement in accuracy was
observed when the number of samples was increased beyond
200 for a test sequence).

C. 3D motion segmentation of rigid bodies

The objective of 3D motion segmentation is to identify
multiple moving objects using point trajectories through a
video sequence. If the projections (to the image plane) of N
points that are tracked through F frames are available, denoted
[xfα]

f=1...F
α=1...N : xfα ∈ R2, then [44] has shown that the point

trajectories Pα = [x1α, y1α, x2α, . . . xFα, yFα]
> ∈ R2F that

belong to a single rigid moving object are contained within
a subspace of rank ≤ 4 under the affine camera projection
model. Hence, the problem of 3D motion segmentation can be
reduced to a subspace clustering problem.

One of the characteristics of subspace segmentation is that
the dimension of the subspaces may vary between two and
four, depending on the nature of the motions. This means
that the model that we are estimating is not fixed. The
proposed method, which was not specifically developed to
solve this problem (unlike some competing techniques [3]),
is not capable of identifying the number of dimensions of a
given motion and requires this information as an input. In our
implementation, we have used the eigenvalues of the sampled
data point to select a dimension d of the model such that
2 ≤ d ≤ 4.

We utilized the commonly used “checkerboard” image se-
quence in the Hopkins 155 dataset [45] to evaluate the CBS
algorithm. This dataset contains trajectory information of 104
video sequences that are categorized into two main groups,
depending on the number of motions in each sequence (two
or three motions).

The clustering error (mean and median) and the computa-
tion time for CBS and competing higher-order affinity-based
methods are shown in Table II. The results show that CBS has
achieved comparable clustering accuracies to those achieved
by competing methods while being significantly faster than
those methods (specially on 3-motion sequences). For com-
pleteness, we have also included the results for methods that
are based on energy minimization (PEARL [7], QP-MF [36])
and fit & remove (RANSAC, HMSS [28]), as reported in [36].
To gain a better understanding of the methods (that have high
accuracy) across all sequences, we have plotted the cumulative
distributions of the errors per sequence in Figure 5a (two-
motion sequences) and Figure 5b (three-motion sequences).
For algorithms with random elements, the mean error across
100 runs is used.

To provide a qualitative measure of the performance, the
final segmentation results of several sequences in the Hopkins
155 dataset, where CBS was both successful and unsuccessful,
are shown in Figure 6.

The sequences in the Hopkins 155 dataset are outlier-free.
To test the robustness to outliers, we added synthetically
generated outlier trajectories to each three-motion sequence of
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Fig. 3. Results for the “posters-checkerboard” sequence. 3a shows the ground-truth clustering, and 3b - 3d shows the clusterings that were obtained with
RDM, CBS-nSS and CBS at 1 s. 3e and 3f show the variation of the clustering error with time and the value of parameter k, respectively, and 3g shows the
variation in the clustering error with the value of parameter k (best viewed in color).

TABLE I
TWO-VIEW MOTION SEGMENTATION RESULTS ON THE ADELAIDE-RMF DATASET. THE MEDIAN CE VALUES OF PEARL AND FLOSS [43] REPORTED IN

[33] ARE USED HERE.

PEARL FLOSS QP-MF RCMSA CBS
Median CE Median CE Median CE Time Median CE Time Median CE Time

biscuitbookbox 8.11 11.58 5.02 4.78 7.72 0.56 0.00 0.95
boardgame 16.85 17.92 17.38 4.49 12.09 0.50 11.28 0.99

breadcartoychips 12.24 15.82 8.65 4.52 9.97 0.64 5.63 0.93
breadcubechips 9.57 11.74 3.04 4.47 9.78 0.54 0.87 0.85

breadtoycar 10.24 11.75 6.33 4.20 8.73 0.44 3.96 0.75
carchipscube 10.30 16.97 17.27 3.59 4.85 0.42 2.44 0.65

cubebreadtoychips 9.02 11.31 2.14 5.07 8.87 0.71 1.91 1.13
dinobooks 19.17 20.28 17.92 5.20 17.50 0.73 12.98 1.25

toycubecar 12.00 13.75 14.50 3.71 11.00 0.38 19.19 0.70

the Hopkins 155 dataset3. The clustering results of the CBS
method and those that were obtained by the best-performing
method (SCC) are plotted in Figure 5c. The results show that
CBS was able to achieve high accuracy in the presence of
outliers on more sequences. The SSC algorithm is not designed
to handle outliers and, therefore, was not included in this
analysis.

D. Long-term analysis of moving objects in video

The point trajectories of the “Hopkins155” dataset, which
was used in the above analysis, are hand-tuned (i.e., the

3The code available at http://www.vision.jhu.edu/data/hopkins155/ was
used to generate outlier trajectories. In their code, a randomly selected
trajectory in a given sequence is modified by, selecting a random point in that
trajectory and moving the point to a new location by the same displacement
of another randomly selected point in a different trajectory.

point trajectories of each sequence are cleaned by a human
such that they do not contain gross outliers or incomplete
trajectories). Recently, the more realistic “Berkeley Motion
Segmentation Dataset” (BMS-26) was introduced by [47], [48]
for long-term analysis of moving objects in video. This dataset
consists of point trajectories that were obtained by running
a state-of-the-art feature point tracker (the large-displacement
optical flow [49]) on 26 videos directly without any further
post-processing. Thus, those feature trajectories contain noise
and outliers and, most importantly, some are incomplete.
Incomplete trajectories are trajectories that do not run for the
whole duration of the video. They can appear in any frame
of the video and disappear on or before the last frame. These
incomplete trajectories are mainly caused by occlusion and
disocclusion.

The traditional approach of using two views to segment
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TABLE II
COMPARATIVE PERFORMANCES IN TERMS OF ACCURACY AND SPEED USING THE HOPKINS 155 CHECKERBOARD SEQUENCE.

RANSAC PEARL QP-MF HMSS SSC* SCC HOSC CBS
Two-Motion Sequences

Mean 6.52 5.28 9.98 3.98 2.23 1.40 5.28 1.60
Median 1.75 1.83 1.38 0.00 0.00 0.04 0.02 0.10

Time - - - - 0.65 0.66 1.27 0.48
Three-Motion Sequences

Mean 25.78 21.38 15.61 11.06 5.77 5.74 7.38 4.98
Median 26.01 21.14 8.82 1.20 0.95 1.48 1.53 1.04

Time - - - - 1.47 1.29 2.00 0.55
*The results for SSC are generated using the faster ADMM [3] implementation that is provided
at http://vision.jhu.edu/ without any modifications. The SSC CSX implementation [46]
is more accurate but has significantly higher computational cost.
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Fig. 4. Mean and standard deviation of the cost function value at each iteration
across 10000 random runs of Algorithm 1, initialized with tuples from either
complete outliers or true structures. The plots show that on average, the
convergence of the local update step does not depend on the initialization
values.

objects is susceptible to short-term variations (e.g., a human
who is standing for a short time can be merged with the
background). Hence, Brox and Malik [48] proposed a long-
term video analysis in which a similarity between two points
trajectories was used to build a graph that was segmented
using spectral clustering. Such pairwise affinities only model
translations and do not account for scaling and rotation. Ochs
and Brox [20] used affinities that are defined on higher-order
tuples, which results in a hyper-graph. Using a nonlinear
projection, this hyper-graph was converted to an ordinary
graph, which was segmented using spectral clustering.

In this analysis, we use the approach that was proposed by
Ochs and Brox [20] in which a motion of an object is modelled
using a special similarity transformation T ∈ SSim(2), with
parameters for scaling (s), rotation (α) and translation (v). The
distance from a trajectory (ci(t) → ci(t

′)) to the model Tt is
calculated using the L2-distance: dTt,i = ‖Ttci(t)− ci(t′)‖.
A motion hypothesis Tt at time t can be obtained using two
or more point trajectories that exist in the interval [t, t′] . In
our implementation, we used edges of size h = p + 2 = 4
to generate hypotheses. It should be noted here that the
distance measure is only valid if the trajectories that are used
to generate the hypothesis and the trajectory for which the
distance is calculated all coexist in time. Hence, a distance
of infinity is assigned to all points that do not exist in the

time interval [t, t′]. This behavior causes complications in
the weight update of the proposed method as now some
trajectories can be identified as outliers even though they
belong to the same object. To overcome this, we uniformly
sample small windows (of size 7 frames) and limit the weight
updates to each window.

Another important feature of this dataset is that most
sequences have many frames and data points (e.g., sequence
”tennis”, even with down-scaling by 8 times [20], includes
more than 450 frames and 40,000 data points). Storing a
graph of that size is challenging, especially on a PC. Hence,
in cases in which the number of frames is large, we divide
the video into a few large windows (e.g., 100 frames) and
solve the problem in each large window independently. Next,
we calculated the mutual distance between each structure in
different windows and clustered them using k-means to obtain
the desired number of structures. The number of clusters is
a parameter that is selected such that it yields reasonable
accuracy with minimal over-segmentation.

Once the clusters were obtained, they were evaluated using
the method that was provided with the dataset (man-made
masks on specific frames of the videos). We compare our
results with those of [20], [21], which are based on higher-
order affinities. The results that are given in Table III show that
our method has achieved similar accuracies with significant
improvements in computation time. The computation time is
related to the number of hyper-edges that are used. OB used
N2× (30 + 12) hyper edges in their implementation, whereas
HOSC used 2N/5 +N . Our method uses fewer hyper-edges
(N/10), which are selected using the k-th-order cost function.
The results show that if the edges are selected appropriately,
similar accuracies can be achieved and using fewer edges
results in a lower computational time. Moreover, while the
two competing methods [20], [21] use spatial contiguity in
selecting the edges for constructing the affinity graph, the
proposed method does not use any such additional information.

V. DISCUSSION

The proposed method requires the value of k, which defines
the minimal acceptable size for a structure in a given applica-
tion, as input. Any robust model fitting method must establish
the minimal acceptable structure size (either explicitly or
implicitly); otherwise, it may yield a trivial solution. For ex-
ample, if we are given a set of 2D points and asked to identify
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Fig. 5. Cumulative distributions of the clustering errors (CE) per sequence of the Hopkins dataset. Figure 5a Two-motion sequences, Figure 5b three-motion
sequences and Figure 5c three-motion sequences with added synthetic outliers.
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Fig. 6. Clustering results that were obtained using the proposed method on several example sequences from the Hopkins dataset. The top row show cases
in which the proposed method was successful, whereas the bottom row show cases in which the proposed method failed to identify all the clusters correctly
(best viewed in color).

lines in the data without any additional constraints, there would
be no basis for excluding the trivial solution because any two
points will result in a perfect line. Hence, to find a meaningful
solution, there must be additional constraints, such as the
minimal acceptable size for a structure. The proposed method
estimates the scale of the noise from the data and the analysis
of [35] showed that estimation of the noise scale from the
data requires at least approximately 20 data points to limit the
effects of finite-sample bias. This leads to a lower bound on
k of approximately 20.

Similar to competing clustering-based methods (e.g., SCC
[19], SSC [3]), the proposed method requires prior knowledge
on the number of clusters. This is one of the main limita-
tions of the proposed method. The problem of identifying

simultaneously the number of structures and the scale of the
noise remains a highly researched area. Remaining outliers
can always be viewed as members of a model with large noise
values. Zelnik-Manor and Perona [50] proposed a method for
automatically estimating the number of clusters in a graph
using eigenvector analysis. However, using such methods to
identify the number of clusters in a graph requires smoothing
parameters or thresholds that are similar to those that are used
in energy-based methods. Since our focus in this paper is on
efficiently generating the graph (not on how to cluster it), we
have not included clustering in the evaluations. Various model
fitting methods that are based on energy minimization [7] have
been devised for estimating the number of structures given
the scale of the noise. They achieve this by adding a model
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TABLE III
MOTION SEGMENTATION RESULTS ON THE BERKELEY MOTION SEGMENTATION DATASET (BMS-26).

Density Overall error Average error Over-segmentation rate Extracted objects Total Time (s)
OB 1.03% 5.68% 24.74% 1.48 30 434545

HOSC 1.03% 8.05% 27.84% 2.1 22 11966
CBS 1.03% 7.80% 22.60% 2.08 22 7875

complexity term to the cost function that penalizes additional
structures in a given solution. However, these methods require
an additional parameter that balances the data fidelity cost with
the model complexity (the number of structures in [21]). Our
experiments on [21] showed that the output of these methods
was heavily dependent on this parameter and required hand-
tuning on each image (of Table I) to generate reliable results.

The proposed method uses a data-sub-sampling strategy that
is based on a set of inclusion weights to bias the algorithm
to produce edges from different structures. These inclusion
weights are iteratively calculated using the inlier/outlier di-
chotomy for each edge. However, in cases in which there
is additional information about the problem, such as spatial
contiguity, one can use this approach to improve the sub-
sampling. For example, in two-view motion segmentation, the
Euclidean distance between points can be used to construct a
KDtree, which can be used to perform the sampling directly
(i.e., select the initial point randomly and include the Ns points
that are closest to that point as the data sub-sample). However,
our approach does not facilitate the integration of higher-order
potentials such as those that were introduced in [51]. In the
performance evaluations of this paper, we have not used any
such additional information.

VI. CONCLUSION

In this paper, we proposed an efficient sampling method
for obtaining a highly accurate approximation of the full
graph that is required for solving multi-structural model fitting
problems in computer vision. The proposed method is based
on the observation that the usefulness of a graph for seg-
mentation improves as the distribution of the hypotheses that
are used to build the graph approaches the actual parameter
distribution for the given data. In this paper, we approximate
this actual parameter distribution using the kth-order statistical
cost function, and the samples are generated using a greedy
algorithm coupled with a data sub-sampling strategy.

The performance of the algorithm in terms of accuracy and
computational efficiency was evaluated on several instances
of multi-object motion segmentation problems and was com-
pared with the performances of state-of-the-art model fitting
techniques. The comparisons show that the proposed method
is both highly accurate and computationally efficient.
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